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PREFACE

I am not now writing a treatise, but simply prefacing a somewhat peculiar nar-
rative by observations very much at random. [Epcar Arran Pok, The Murders
in the Rue Morgue)

This bundle of essays is the result of an opportunity to spend more
than a year in reading and reflection about economics in the present
phase of its development. It is by no means intended as a diagnosis of
that phase, or as a set of recommendations for future research. What
is offered is one man’s explanations of some recent developments in
economic theory, his comments and perplexities about the character
and basis of economic knowledge, and his intuitions about possible
directions of future work in theory and in empirical investigations. In
keeping with the unsystematic nature of this undertaking, the essays
reflect the particular preoccupations and limitations of their author at
least as much as they reflect the current state of economic science.
These preoccupations concern broadly the parallel and connected
development of economic theory and economic observation and meas-
urement in order to increase man’s understanding and society’s control
of economic conditions, advancement, and well-being. More in par-
ticular, they concern the development and the use of mathematical and
statistical concepts and tools for these purposes.

At the Atlantic City meeting of the American Economic Association,
held in January, 1947, Professor J. M. Clark appealed to mathematical
economists to communicate their results to the general economist. In
the subsequent issue of Econometrica he elaborated on his plea for com-
municability and made it more specific. The first essay of this book is
an attempt to communicate the logical content, and some of the under-
lying reasoning, of certain recent developments in mathematical eco-
nomics. It is the longest of the three essays, and requires relatively
the highest degree of concentration from the reader. It argues that,
with the help of more fundamental mathematical tools, the common

logical structure of received economic theories of quite diverse origin
vii
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can be brought out. The descriptive theory of competitive equilibrium
—the word “descriptive” is used at the rather abstract level indicated
by the postulates of the theory—and the normative theory of the use of
prices for the efficient allocation of resources appear as two sides of
one coin. In addition, the recent advances in computing methods for
the allocation or programming problems of a single organization are
seen as another offshoot from the same mathematical stem. Finally,
the derivation of all results from prime postulates throws a clear light
on the limits of their applicability. No attempt is made, however, to
offer a rounded survey of significant recent work in mathematical
economics. Important contributions to the literature are not mentioned
unless they have a direct connection with the subjects selected for
presentation.

If the first essay attempts to respond to Professor Clark’s appeal,
the second addresses a plea of its own to the general economist. It
urges a clearer separation, in the construction of economic knowledge,
between reasoning and recognition of facts, for the better protection
of both. It recommends the postulational method as the principal in-
strument by which this separation is secured. Thereafter it goes on to
explore various directions in which the postulates of economic theory
could be modified and refined in order to recognize more aspects of
reality.

The third essay considers the interaction between tools of analysis
and choice of problems in economics. It examines in particular four
recent and current tool developments and seeks to perceive some of their
implications for future research, particularly in regard to the problems
of achieving a stable rate of growth of the economy. If it is felt that
the latter discussion is somewhat speculative, it may be said in defense
that tools are of interest more in their promise than in their achieve-
ment. Perhaps the inhibitions we feel against committing our intuitions
to the printed page in substantive discussion should not be allowed to
impede us to the same extent when we discuss choices of tools and of
problems.

The three essays, concerned with questions of substance, of method,
and of tools, respectively, can be read separately or in any desired
order. Nevertheless, a common thread runs through all three. Thus the
substantive developments reported in the first essay serve as examples
in the discussions of method and of tools. The connecting thread of the
volume is an emphasis on explicit formal model construction both in
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theory and in empirical research. This emphasis derives from a belief
that in the present period economics as a practical art is ahead of eco-
nomics as a science. At this stage most of us prefer to see the advising
of government economic policies entrusted to the experienced intuitive
economist. But the task of providing him over time with better, more
explicit, and more transferable knowledge requires, I believe, an ap-
proach somewhat different from his usual habits of thought. To argue
this case is a common purpose of the three essays.

The book, then, is primarily addressed to the general economist. In
addition, it may have value to the social scientist, the philosopher, the
statistician, or the mathematician who seeks information about or an
appraisal of the actual and potential use of mathematical and other tools
in the current phase of economics.

When the manuscript for this book was in an advanced state of
preparation, two books appeared with in part similar objectives: Pro-
fessor J. R. Hicks’s A Reconsideration of Demand Theory, and-Professor
Sidney Schoeffler’s The Failures of Ecomomics. At that point it seemed
preferable not to delay the present book by an attempt to respond in
its pages to the important contributions made by these authors.

I am indebted to many friends and colleagues, and in particular to
Kenneth J. Arrow, Carl Christ, Gerard Debreu, William J. Fellner,
Carl G. Hempel, Leonid Hurwicz, Lawrence R. Klein, Edmond C.
Malinvaud, Alan S. Manne, Harry Markowitz, Lionel McKenzie,
Richard Ruggles, Leonard J. Savage, and James Tobin, who have read
portions of the manuscript and given me the benefit of highly valued
criticism and comment. While the interrelated research of many of
these has made an account like the present volume possible, it will be
understood that the author is solely responsible for the use made of
their published ideas and of the further discussions and advice he has
received.

I am indebted to the Rockefeller Foundation and to Yale University
for the opportunity to concentrate on the studies that have crystallized
in these essays, and to the Cowles Foundation for Research in Eco-
nomics at Yale University for permission and encouragement to use the
further time required to complete them.

I wish to thank Mrs. Truus W. Koopmans, Miss Anne W. Koop-
mans, Mrs. Ellen Ryan, and Mrs. Natalie Sirkin for their help in
reading proof and in preparing the Index.

T. C. K,
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ALLOCATION OF RESOURCES
AND THE PRICE SYSTEM

It must be admitted that in many areas of mathematical economics very substantial
abstractions are being used, so that one can hardly speak of a good approximation to
reality. But it should be remembered that, on the one hand, mathematical economics
is a very young science and, on the other, that economic phenomena are of such a com-
plicated, involved nature that far-reaching abstractions must be used at the start
merely to be able to survey the problem, and that the transition to wmore realistic
assumptions must be carried out step by step. [ABRAHAM WALD, ‘‘ON SOME SYSTEMS
OF EQUATIONS OF MATHEMATICAL ECONOMICS,” TRANSLATED, [Ecoziometrica,
voL. 19, No. 4, ocTOBER 1951, . 369]
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1. POINT SETS, LINEAR FUNCTIONS, AND THE
DECENTRALIZATION OF ECONOMIC DECISIONS

1.1 NEW TOOLS FOR OLD PROBLEMS

In the Introduction to Foundations of Economic Analysis,* Professor
Paul A. Samuelson points to the formal similarities in a wide variety of
problems arising in diverse parts of economic theory. To bring out the
common logical structure of these problems is the principal purpose and
accomplishment of his book.

1 Harvard University Press, Cambridge, Mass., 1948 (2d ed.). To be quoted hereafter as
Foundations . . . . '
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‘The similarities arise from wide application, in the description of eco-
nomic behavior and in the recommendation of economic actions, of the
idea of maximization under constraints. For instance, it is postulated
that the entrepreneur in his role of production manager minimizes the
cost of whatever is produced, within a given range of technological
possibilities. It is further assumed that as a market agent he chooses the
amount and composition of his output in such a way as to maximize
profit from its sale. Other models postulate that the consumer maxi-
mizes, within the bounds of his income and/or wealth, a quantity, called
a utility function, which expresses how his satisfaction varies when his
consumption varies. Discussions of economic policy or of the program-
ming of government activities! recommend that the policy makers seek
to maximize some target function of variables regarded as social objec-
tives, subject to given restraints of technology, of resource limitations,
or of international intercourse. In all these cases, it is either assumed or
recommended that an index of the degree of attainment of some objec-
tive is or be maximized under given constraints.

It is not the purpose of the present essay to appraise the realism of
this assumption or the appropriateness of the recommendation. We
accept the fact that a large body of economic thought has taken off from
such premises. What we propose to do is to pursue Samuelson’s purpose
a step further into the realm of tools of analysis.

In recent years, mathematical tools of a more basic character have
been introduced into economics, which permit us to perceive with
greater clarity and express in simpler terms the logical structure of im-
portant parts of economic theory. Parallel with this change in tools,
there has been a change in emphasis as between various aspects of the
theories in which the tools are applied. Traditionally, mathematical eco-
nomics has emphasized models that describe the formation of prices and
quantities in competitive markets through unique, or at least locally
determinate, solutions of equation systems. Such models have also been
used to study how these solutions respond to changes in technological
knowledge, in consumers’ preferences, in governmental policies, or in

1 See for instance, J. Tinbergen, On the Theory of Economic Policy, North-Holland Publish-
ing, Amsterdam, 1952; and Marshall K. Wood and George B. Dantzig. “The Programming
of Interdependent Activities,” in T. C. Koopmans (ed.), Activity Analysis of Production and
Allocation, Cowles Commission Monograph 13, Wiley, New York, 1951, chaps. I and II,

(pp. 15-32).
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“external conditions’ such as weather or foreign demand. Calculus and
the theory of implicit functions have formed the main mathematical
tools for this type of analysis.

The new tools allow us to shed new light on older and perhaps also
more fundamental problems. The emphasis is shifted to the specification
of conditions under which decentralization of economic decisions
through a price system is compatible with efficient utilization of re-
sources. It is not suggested that these classical problems were at any
time lost out of sight. The “new welfare economics’ has made them its
special concern. However, the tools referred to were inadequate for the
purpose in question. In the first place, they did not permit recognition of
restraints on choice that require expression by inequalities rather than
by equations. Owing to this limitation of the tools in use, the literature
of an entire period almost completely ignored such simple facts as the
impossibility of consuming negative quantities of goods or of rendering
negative quantities of labor, or the impossibility of running production
processes in reverse. Secondly, the calculus, used in the way it was used
to scan the (restricted) domain of the target function for a maximum
position, is a myopic instrument. It served only to compare the would-
be-maximum position with alternative positions in its immediate neigh-
borhood. For this reason, the problem of formulating conditions under
which a position could stand comparison with more distant rivals was
not faced.

As a result, the conditions for optimal allocation of resources formu-
lated by the new welfare economics lacked necessity because of the
first-mentioned defect of the tools used, and lacked sufficiency because
of the second defect—thus ending up with no assured connection with
optimality. Fortunately, as often happens, the intuitions that had origi-
nally led to the theories in question were better than the first attempts at
their mathematical expression. It has now become apparent that proposi-
tions of the kind aimed at in the new welfare economics can be formu-
Jated more succinctly, and can be established by reasoning both simpler
and more compelling, with the help of a few elementary concepts and
theorems borrowed from the mathematical theory of linear spaces. At
the same time, the basic unity of welfare economics with the descriptive
theory of competitive equilibrium is brought out more clearly by these
formulations.
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In the present Section 1 of this essay, we shall first explain the con-
cept of a linear space and its use in describing any commodity bundle by
a point in such a space. Since a restraint on choice is then suitably de-
scribed by a set of points, we shall thereafter review a few concepts and
theorems about point sets in linear spaces that have been found useful in
economic theory, and illustrate their application by examples designed
to bring out the essential character of the services they render. The first
concept to be discussed, that of summation of sets, provides a tool for
translating restraints on individual choices into limitations on their ag-
gregate effects, and for showing that profit maximization at given uni-
form prices can under suitable conditions be decentralized. The second
concept, that of comvexity of a point set, allows us to formulate condi-
tions with regard to technology and preferences that ensure the exist-
ence of a price system which sustains decentralized optimizing produc-
tion and consumption decisions.

In the subsequent sections these concepts will then be used in com-
bination for the description of competitive equilibrium and the analysis
of its optimality properties (Section 2), for the further study of produc-
tive efficiency under constant returns to scale and its relation to the price
system (Section 3), and for the study of allocation of resources over
time (Section 4).

1.2 THE COMMODITY SPACE

Any choice we shall consider can be represented as a choice of a com-
modity bundle. On the basis of a numbered list of commodities, a
commodity bundle is given by specifying a sequence of z# numbers,
a1, ds, . . . , @, each number representing the amount of the cor-
responding commodity in the bundle. Depending on the application,
these amounts may be interpreted as rates of flow per unit of time, main-
tained at a constant level for an indefinite period; or each number 45 may
be regarded as a quantity made available during just one specified period
out of a number of successive periods. In the latter interpretation, each
commodity is characterized not only by its qualitative characteristics
but also by the period during which it is regarded as available.

The following meaning is to be attached to the (positive or negative)
sign of an amount of a commodity: If the bundle represents the results
of a productive activity, we shall give a positive sign to each output or
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rate of output and a negative sign to each input (rate), whereas a zero_
amount indicates that the commodity in question is not involved in the
activity in question, either as output or as input. If the bundle represents
the choice of a consumer, the amounts or rates of his consumption are
represented by positive numbers, those of the various kinds of labo:
supplied by him by negative numbers.

Two operations on commodity bundles are important. The first con-
sists of the joining of two bundles (a1, a2, . . . ,a,) and (b, bs, . . .,
b,) into a new one (§1, S2, - . . , $»), and is carried out by addition of

corresponding amounts,
si=a+ b,  ss = az+ by, cevs  Sn=n+ by

If all amounts involved are positive, the operation describes simply the
putting together of two bundles of commodities. If some amounts are
negative, for instance because the bundles represent the results of pro-
ductive activities, the operation gives the net results of the two proc-
esses, obtained possibly by using some of the outputs of one process as
inputs for the other and conversely. The second operation consists of
multiplying all amounts in a commodity bundle (a3, . . ., 4,) by a
common factor of proportionality, a real number or scalar X, to result in
a new bundle (Aay, . . . , Ma,). We shall see later that this operation
is important in expressing the idea of constant returns to scale in
production.

™ By taking each of the amounts 4, . . . , a4, of a bundle as a Cartesian
coordinate of a point or vector' a, commodity bundles are represented by
points in an 7-dimensional Euclidean space. The joining of two bundles
1s then represented by addition of the two representing vectors, as
illustrated for bundles of two commodities in Figure 1.1. Geometrically,
in any number of dimensions, the sum s of two vectors 2 and & is found
as the fourth vertex of a parallelogram having the origin and the vectors
a and b as the other vertices. It is denoted by s = a + &. Scalar multi-
plication of a vector a by a number X results in another vector (denoted
M) of the same direction if \ is positive, opposite in direction if A is
negative, coincident with the origin if X is zero, and in all these cases
having a length? |\ times that of 4, as illustrated in Figure 1.2.

1 The terms point and vector are used synonymously in a linear space.
2 [\| denotes A if A is positive or zero, — A if A is negative, and is called the absolute value
of A
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Because of the formal properties of addition and scalar multiplica-
tion,! the Euclidean space we are employing is an example of a linear
space. The latter concept also includes spaces with an infinite number of
dimensions, relevant to economic models involving an infinite number
of future periods; or a continuous treatment of time over a period of
finite duration; or a continuous treatment of locational coordinates; or

“2”
L2+ b1
: Aa
b g=b;-- !
| az+bp °
1 a
: P o [°
0 ] ,’)\"a

piGURE 1.1. The sum s of two pomts 2 and 5. FIGURE 1.2. Scalar multiplication of a vector
a(A>150< N <1;\ <0).

other types of continuous quality variation. While most of the proposi-
tions we shall study carry over into the infinice-dimensional case,? we
shall here consider only finite-dimensional spaces (except in Section 4
below).

1.3 SUMMATION OF OPPORTUNITY SETS AND DECENTRALIZED
PROFIT MAXIMIZATION

Most of the properties of point sets in linear spaces that have been
found useful to the economist are highly elementary to the mathema-
tician. For this reason, it is difficult to find a text that spells them out in
2 manner and selection most useful to the economist. However, because
the properties that concern us appeal strongly to geometrical intuition,
our subject can be elucidated by diagrammatic illustrations based on

1 Commutative and associative laws of addition, existence of a null bundle O (the origin)
such that 2 4+ 0 = a for all 4; existence of a negative of each 4, i.e., a vector (—4) such that
2+ (—4) = 0; distributive and associative laws of scalar multiplication; \a = 0if A = 0
and M = a if A = 1. For further details see, for instance, Paul R. Halmos, Fmite Dimen-
sional Vector Spaces, Princeton University Press, Princeton, N.J., 1948, chap. L.

2 See Gerard Debreu, “Valuation Equilibrium and Pareto Optimum,” Proceedings of the
National Academy of Sciences, vol. 40, no. 7, July 1954, pp. 588-392, quoted hereafter as
“Valuation Equilibrium . . . .”
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elementary geometry, while confining occasional indications of proofs
or references to methods of proof to footnotes.

A set A of points in a space is defined by any rule or criterion which
allows us unambiguously to determine for every point x in the space
whether it belongs to A or does not belong to 4. Given any two sets 4
and B, their intersection is defined as the set of all points belonging to

\
/
\
——————)

N\ P2
~ - ~
S - \\\
<
FIGURE 1.3a. Two point .  wiGure 1.3b. Their FIGURE 1.3¢. Their
sets A and B. intersection C. union D.

both A4 and B, while their union is the set of all points belonging to either
A or B (or both). These concepts are illustrated in Figures 1.3a~c. More
important for our present purposes than the union is the notion of the
sum of two sets 4 and B. This is defined as the set S of all points
s = a + b that can be formed by tak-
ing the sum of any point 2 belonging
to A and any point & belonging to B.
This construction is illustrated in
Figure 1.4.

Each of the operations of intersec-
tion, union, or summation can, of
course, be applied in succession to
any finite number of sets A, B, C,
. . ., and the resulting set is in each case independent of the order in
which the sets 4, B, C, . . . are taken up.

The relation of the concept of summation of sets to the decentraliza-
tion of allocative decisions has probably already occurred to the reader.
Let the restrictions of technology and resource availability applicable to
one producer be expressed by the statement that he can simultaneously
realize the rates of net output of various commodities represented by
the coordinates of any point 2 of a set A, called a production set, but not
rates of net output represented by any point not in 4. Let another pro-

FIGURE 1.4. The sum $ of two sets
A and B.



SETS, LINEAR FUNCTIONS, AND DECENTRALIZATION OF DECISIONS 11

ducer be similarly restricted to a production set B. Then their pooled
net output possibilities are represented by a set S found as the sum of
A and B.

One implication of this construction needs emphasis. It is assumed
that the range of alternatives open to one producer does not depend on
the choice actually made by another. Whenever this assumption of non-
interaction between choices can be made, the summation of sets is the
appropriate mathematical tool for studying the aggregation of individual
opportunities. Its use may be illustrated by a simple discussion of de-
centralized profit maximization at given prices.

Let a bundle of # commodities, represented by a point

£ = (X1, Xoy - - - 5 Xn)

in #-dimensional space, be the result of a productive activity. At given
prices, p1, Ps, . - . , Pn, the profit obtained from that activity will be a
homogeneous linear function 1(x) = pixs + paxa + . . . + pax, of the
coordinates of the point x, with the prices as coefficients. In the normal
case where all prices are positive,’ the terms pix1, paxs, . . . corre-
sponding to outputs represented by positive numbers x1, &3, . . . , will
be positive and add up to the total value of output, while the terms
pi%;, . . . corresponding to inputs, represented by negative numbers
%, . . . will serve to subtract cost of inputs. The function is called
homogeneous because it does not contain a ““constant term.” For this
reason, if our bundle « is itself the sum x = # + & of two bundles 2 and
b, then its value /(x) at the given prices is, of course, the sum /(a) + I(b)
of the values of the constituent bundles.

In the special case of only two commodities, a linear function
P1x1 + poxs can be easily pictured by a set of parallel lines, on each of
which the function is constant (Figure 1.5a). The common slope of the
lines is determined by the coefficients pi, ps, of the function (the prices
of the goods) in such a manner that, if a2 normal to the set of parallel lines

" is drawn through the origin, the coordinates of any point on this normal
are proportional to the corresponding coeflicients pi, ps, of the linear
function. If a suitable unit of length is selected on this normal, it can
serve as a new coordinate axis along which the profit function is meas-

1 The possibility of negative prices is discussed at the end of Section 2.4 of this essay.
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ured.? (Figure 1.5b). If the prices are positive, the positive direction of
the normal points into the first (the positive) quadrant. Similar state-
ments can be made with regard to linear functions of more than two
variables.

The clue to our discussion is a simple theorem?® relating to the
maximization of a linear function on a sum of sets. We shall formulate it
Xy x2

7 A

N 7
\\ / / o \‘?x+
AN /A
% -

B

FIGURE 1.5a. Representation of a linear FIGURE 1.5b. The same (homogeneous) lin-
function of two variables. ear function measured along a new axis.

x1

for the sum S of only two sets, 4 and B, although it applies to any finite
number of sets. The theorem consists of two statements which are con-
verse to each other and which we shall number separately.

THEOREM [.1. If a linear function defined on a linear space reaches
its maximum on a set 4 in a point  of A, and its maximum on a set
B in a point b of B, then this function reaches its maximum on the
sum set S of A and B in the point s = a + b.

THEOREM 1.2. If a linear function defined on a linear space reaches
its maximum on a set S, which is the sum of two sets A and B, in a
point s, and if 2 and & are points of 4 and B, respectively, such that
s = a -+ b, then this function reaches its maximum on A in 4 and
its maximum on B in b.

1 Because the profit function is homogeneous, the zero point on the new axis falls again in
the origin. It might be thought that the concept of a normal should not or could not be used
in a space of which the coordinates are subject to arbitrary choices of units of measurement.
If the unit of commodity “1” is doubled, the number x; is cut in half, 1t 1s true; but at the
same time the price p; is doubled, thus preserving the numerical value of the function p1x; +
p2x2. Hence, after a change of units, the (new) value axis is again normal to the (new) lines
on which the profit function is constant. Properly, the value axis (or price vector) and the
constant profit lines belong to different spaces which for convenience we have superposed.

2 For ease of quotation, we shall refer to mathematical theorems as “theorems,” and to
economic theorems as ‘‘propositions.”
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These statements, to be referred to together as Theorem I, are
illustrated in Figure 1.6. They assert the interchangeability of the two
operations: summation of sets, and maximization of a linear function.!
Trivial to the mathematician, this theorem is a basic tool for the econo-
mist. Some of its most useful services are rendered in conjunction with
other theorems, as will become apparent in the next few chapters. But
1t may help us here to consider one somewhat artificial application that
will bring out the nature of its con-
tribution in isolation and may also
impart a sense of its obviousness to a
reader who mistrusts abstract formu-
lations.

Consider a plant with departments
between which intermediate products
can be moved at zero cost. Let the !
possibility exist for each primary in- o
put, intermediate product, or final out- ¢~
put of the plant to be either bought rcure 1.6. Hlustration of Theorem I.
or sold, at the same given and constant
price, at a location for which transportation cost to and from the plant is
zero. Let the range of productive activities available to each depart-
ment be represented, in the space of all commodities involved, by a
point set which is called the production set of that department, and let
this set be independent of the choices made by other departments.
Then, so says Theorem 1.1, if each department head acting inde-
pendently chooses the productive activities of his department so as to
maximize the profit on its net output bundle, this will ensure profit
maximization for the plant as a whole. Conversely, says Theorem 1.2,
if by whatever means the activities of all departments have jointly
resulted in the maximum achievable profit for the plant as a whole, then

//

1 proor oF I.1. Let I(x) denote the linear function in question after subtracting a constant
to make it homogeneous. Assume that 5’ is any point of S. Then there exist, by the definition
of set summation, points a’ of 4 and 4’ of B such that s’ = 4’ + 5. But then I(s') = I(a") +
1(%") and I(s) = I(a) + I(b) because 1(x) is linear and homogeneous. Also I(2") = I(s) and
1(8") = 1(b) because of the premises of I.1. Hence I(s") = I(s).

PROOF OF 1.2. Assume that, for some point 2’ of 4, I(a") > I(a). Then the points’ = &’ + &
is in S by the definition of set summation, and I(s") = I(2') + I(B) > l(&) + I(B) = I(s),
contradicting the premise of I.2. In the same way one proves the impossibility of I(5") > I(5)
for a point &’ of B.
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each department necessarily operates so as to achieve the maximum
profit available to it. The reason is obvious: the assumptions of noninter-
action between the productive activities of departments and of the avail-
ability of a market with a constant price for each commodity have made
the departments entirely independent of each other. Hence total profit
is the sum of the profits of all departments, and the sum is at its maxi-
mum attainable value if and only if each component is at its maximum.

For later reference, we record this simple result of our reasoning in
economic terminology.

propPoSITION 1. If each of 7z production sets describes the choices
open to one of m agents (entrepreneurs or production managers)
independently of the choices made by the other agents, and if prices
of all inputs and outputs are independent of the choices made, the
maximization of aggregate profit implies maximization of indi-
vidual profits and conversely.

Of the many questions not answered by Theorem I, one may be
taken up for some comment. Neither part of the theorem says that a
maximum of the given linear function exists on the sum set S, or on its
component sets 4, B, . . . , either for every conceivable set of prices,
or even for only some one given set of prices. With respect to any par-
ticular model of production possibilities, therefore, the question for
what prices (if any) profit maximization is possible is entirely open.
Two more mathematical concepts will enable us to specify one class of
models for which the answer to that question is definite.

A point set is called bounded! if one can specify a square (cube, hyper-
cube of as many dimensions as the space considered), however large,
which contains all of its points. The disk of a circle is bounded, but a
straight line indefinitely extended is not. The second concept, closed-
ness, may be illustrated before it is defined. In two-dimensional space
the set of points inside or on a circle is closed, but the set of points inside
a circle is open. The set of all points to one designated side of a straight
line 1s open, but its union with that line is closed. A line segment is
closed only if its endpoints are regarded as included. To express sharply

the distinction suggested by these examples, call a point x a boundary
1 The reader should perhaps be cautioned that the three terms ‘‘boundedness,” “‘bound-

ary,” and “bounding plane,” while derived from the same etymological root, have quite

different mathematical meanings, as their definitions given in the next few pages show.
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point of a set A if, within any specified positive distance! d from x, how-
ever small, one can find a point of 4 as well as a point not of 4. This
definition does not require x itself
to be a point of 4. However, a
closed set is defined as a set which
contains all its boundary points.2 N
Although it is hard to think of a A
situation where the presence or
absence of a boundary point in a
set of production possibilities is
a meaningful empirical question,
the distinction is needed because
of the mathematical tools it makes available.

Finally, a set is called compact if it is both bounded and closed. The
union, the intersection, and the sum of a finite number of sets, each of
which 1s bounded, or compact, are themselves bounded, or compact, as
the case may be. The union and the intersection of a finite number of
closed sets are also closed, but the sum of two (unbounded) closed sets
need not be closed. With these preparations, we can formulate another
useful theorem (illustrated by the set 4 in Figure 1.7).

x2

/

x1

FIGURE 1.7. Maximization of a linear
function on a compact set 4.

THEOREM II. On a compact set, a linear function® reaches its maxi-
mum in a point of the boundary.*

It follows that if individual production possibilities are represented
by compact sets, profit maximization is possible, individually and in the
aggregate, for any system of prices. Since closedness is not a practical

1 A wide class of definitions of ““distance’ is acceptable here. Interesting alternatives to

Euclidean distance di(x,y) = [2 (2 — yk)z]% are da(x,y) = 2 |2z — yx| and d3(x,y) =
k k

Max |2 — yi|. Again, it does not matter that all of these definitions depend on the arbitrary
k

units of measurement in which amounts of commodities are expressed.

2 A set A is called open if the set of all points not in A is closed. The entire space and
the empty set are both open and closed.

3 A continuous function, not necessarily linear, will also reach a maximum on a compact
set (although not necessarily in a boundary point). This can be looked upon as a key result
of the introduction of irrational numbers.

4 The same maximum value may possibly be attained in more than one point of the bound-
ary. However, if we exclude the trivial case where the function is a constant, the maximum
cannot be attained in a point which is not a boundary point.
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issue, the boundedness of production sets is the controlling consideration
for the applicability of this theorem. It would seem that boundedness is
a suitable assumption in what the economist is used to calling “‘short-run
problems.” While this designation suggests a time limitation, the
common analytical characteristic of problems covered by this term
appears to be the presence of certain fixed factors of production, not
subject to change, or in any case not subject to increase, within the
range of alternatives admitted in the problem. In all cases where these
fixed factors place bounds on the achievable inputs and outputs of all
other commodities, it would seem appropriate to postulate compact
production sets.

If unbounded production sets are admitted, the question as to whether,
and for what prices, profit maximization is possible has to be faced
afresh. It will occupy us further in Sections 2.5 and 3.10 ot this essay.

1.4 SEPARATION OF SUPPLY AND CONSUMPTION DECISIONS

The decentralization of decisions we have just considered spreads
production decisions over a group of entrepreneurs or managers, all of
whom are on the producing side of the ““market” for consumers’ goods.
In Section 2, we shall encounter an application of the same theorem to
the decentralization of consumption decisions among consumers, all of
whom are on the other side of that market. But before proceeding to
this, we must explore the possibilities of placing production decisions
and consumption decisions in different hands by means of a price system.
Concepts and theorems that assist this exploration will now be
considered.

Any straight line in a two-dimensional space divides that space into
three subsets: points on the line, those to one side, and those to the other
side. Algebraically, the subdivision can be made by a linear function
with coefficients so selected that the function has a constant value on
the line, larger values on one side, and smaller values on the other. In
n-dimensional space, a similar subdivision is made by any linear (n-1)-
dimensional hyperplane. In general, we shall often call such a (n-1)-
dimensional dividing hyperplane a plane, no matter whether it actually
is a plane or a hyperplane. We shall call a (closed) halfspace the set of all
points in such a plane or to one designated side of it. Then each plane
defines two halfspaces, which have that plane as their intersection. A
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plane is called a bounding plane of a given point set A, if all points of 4
are contained in only one of the halfspaces associated with that plane.
(See Figure 1.8a. We add for later reference that, in particular, a bound-
ing plane of a point set A is called a supporting plane of A if it contains a
point of the boundary of A). A plane is called a separating plane of two
given point sets 4 and B (see Figure 1.8b) if it is a bounding plane to
both, with the points of A in one of the halfspaces it defines, those of B
in the other. (In particular, if two sets 4 and B have a common boundary

L

r L
FIGURE 1.82. Two bounding lines L, L’ of 2 FIGURE 1.8b. A separating line L
set A. L’ is also a supporting line. of two sets A and B.

point, any separating plane they may have must be a supporting plane to
both 4 and B).

To illustrate the use of these concepts, we return to the classical and
time-honored example of a man by whom production and consumption
decisions are made in combination: Robinson Crusoe. In order to stay
within the two dimensions of the printed page, let us consider only two
commodities, the labor Robinson applies and the food he produces with
it. As an input to production, labor “net output” is represented as an
essentially nonpositive quantity. On the other hand, food net output is
essentially nonnegative. Hence all sets we shall consider are subsets of
the (closed) “‘second quadrant” (Figure 1.9a) cut out of the two-dimen-
sional plane by the axes of a Cartesian coordinate system.

Since Robinson is in sole control of the resources of his island, his
decisions as a production manager can be further subdivided into deter-
mining how much of these natural resources (land, irrigation water,
etc.) to use in production, and choosing the methods by which these
resources are combined with Robinson’s labor in food production. A
corresponding separation of resource use decisions from production de-
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cisions proper is therefore possible, and a separation of this kind will be
studied in Section 2. To make such a separation appear realistic in the
present example we would have to introduce a third dimension for at least
one primary commodity—land, say—which we have already decided
to avoid. We shall therefore represent Robinson’s merged production-
and-resource-use decisions, to be called briefly supply decisions, as the
choice of a point w from a supply set W in the commodity space for
labor and food only. It is then understood that the shape of the set re-
flects the availabilities of land and
Foodoutpt]  other resources for production as
well as Robinson’s production tech-
nology. However, the supply set is
defined without regard to the ques-
tion whether Robinson as a worker
and consumer is capable of supply-
ing the labor input indicated by the
abscissa of some point w of W on
the basis of the food consumption
) indicated by its ordinate. The latter
Labor input consideration is expressed by a
FIGURE 1.9a. The attainable set A4 as the consumption set X, containing all
intersection of the supply set W . . ..
and the consumption set X. points x representing combinations
of food supply and labor require-
ments with which Robinson can manage to survive. In Robinson’s in-
terest we must assume that the intersection of the supply set and the con-
sumption set, to be called the attainable set A (Figure 1.9a), is not empty.
Let us postulate further that, as a consumer (and worker), Robinson
is guided in his choices by a complete preference ordering of all points of
the consumption set. This is a consistent rule which indicates, for any
two points x and x’ in that set, whether Robinson, if given the choice,
prefers x, or &/, or is indifferent between the two. In the latter case, we
shall call x and ' equivalent (that is, in Robinson’s preference structure),
or x equivalent to x'. The rule is called consistent if it meets the transivity
requirement that, whenever x is preferred or equivalent to «’, and &’ is
preferred or equivalent to x”/, then x is preferred or equivalent to! x”’.

~

X

L
LLCLE O LR LD PR T

1]t follows from this definition of transivity that x is actually preferred to x” only if either
x is preferred to &’ or «’ is preferred to x” (or both).
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The ordering is applied by postulating that, from any subset of points of
the consumption set attainable to him, Robinson will whenever possible
select a point that is preferred or equivalent to all other points in the
attainable set.

It is often thought that every complete ordering can be represented
by an ordinal utility function f(x), in the sense that x is preferred to «” if
and only if f(x) > f(x'), and equivalent if and only if f(x) = F(x').

Food output

N

Food output

w
AR ETRAATT

Labor input

FIGURE 1.9b. Indifference curves represent-
ing a preference ordering on the

Labor input o

FIGURE 1.9¢. Line L separating the supply set
W from the no-worse-than-x set X (x).

consumption set.

However, several authors including Herman Wold and Gerard Debreu
have realized that this needs proof,® and have successively and with
increasing generality formulated conditions, essentially of continuity,
under which they prove that a complete ordering permits expression by
a continuous utility function.? We shall call such a preference ordering
(continuously) representable, and draw our diagrams on the assumption
that Robinson’s preferences are of this type, even though our present
reasoning does not depend on it. Figure 1.9b illustrates the preference

1 A simple counter example given by Debreu is the so-called lexicographic ordering in a
space of two commodities. In this ordering, the consumer would always prefer the bundle
with the larger amount of the first commodity, and only among bundles for which that
amount is the same would he prefer the larger amount of the second commaodity.

2 H. Wold, “A Synthesis of Pure Demand Analysis, part 11, Skandinavisk Aktuaritidskrift,
vol. 26, 1943, pp. 220-263. G. Debreu, “Representation of a Preference Ordering by a
Numerical Function,” in R. M. Thrall, C. H. Coombs, and R. L. Davis (eds.), Decision
Processes, Wiley, New York, 1954, chap. XI (pp. 159-165).
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ordering by a set of indifference curves, each of which consists of a set
of mutually equivalent points.!

If, as indicated in Figure 1.9c, there is a best point x in the attainable
set,? that is, a point preferred or equivalent to all others of that set, any
Robinson worth his salt will be able to reach a satisfactory approxima-
tion to such a point unaided by prices on labor and food. But since our
interest is in tools and concepts, not in Robinson, we will discuss a
situation in which there exists a price system with the help of which
Robinson the producer can separate his decisions from those of Robinson
the consumer and laborer.

Let us assume (Figure 1.9c) that there is exactly one best point x in
the attainable set A. We consider the set X(x) of all points in the con-
sumption set preferred or equivalent to x, which we shall call the 7o-
worse-than-x set. This set and the attainable set then have only the point
x in common. Let us assume finally that there is a separating line L of
the supply set W and the no-worse-than-x set X(x), which again has
only the point x in common with either of the two sets. In such a situa-
tion, Robinson can separate his supply and consumption decisions by
the following procedure. He uses the slope of the separating line L to
define two prices, not both zero, one of labor (the wage rate) and one of
food. As a production manager he chooses that point in the production
set (the point x) which maximizes his revenue (Figure 1.9d). The
amount of this revenue can be read off Figure 1.9d as the intercept O/ of
L on the food axis multiplied by the price of food. He assigns this
revenue to Robinson the consumer-worker as non-labor income. The
latter, starting from this income, can now reach an (enlarged) oppor-
tunity set of labor-food bundles by trading his labor for food at the given
prices. The set he can reach is that part of the second quadrant (Figure
1.9¢) that lies “below’ or on the line L. Since choice of a best point
from this set leads him again to the point x, the separation of decision-
making functions has given rise to compatible decisions by the two
Robinsons.

We are not interested at this stage in the question whether or how, by

1 To be precise, the preference ordering is defined not by these curves alone, but by a
complete ordering of them, which is usually regarded as suggested by considerations of

continuity and nonsaturation.
2 This is necessarily the case if the attainable set is compact and the preference ordering

representable (see footnote 3 on page 15).
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some process of trial and error, Robinson can obtain knowledge of a
price ratio that will do this trick. We are even less interested in the
question whether a single person who operates simultaneously as sup-
plier and as consumer should ever want to resort to implicit prices for
decentralized decision making. The principal point to be derived from
our discussion is that if a line of separation exists it defines a price sys-
tem that makes such decentralization possible. This conclusion, seem-
ingly artificial when related to a single decision maker, is part of the
logical and mathematical basis for an understanding of the operation of

Food output Food output
L
x
w
l 1
if =
AT ARIRRD
Labor input O Labor input [o]
FIGURE 1.9d. Revenue maximization on the  FIGURE 1.9e. Maximization of the utility
supply set W. function within the given budget.

competitive markets. It also suggests means of coordinating the de-
cisions of many individuals in a single organization pursuing economic
goals. For this reason, we record the result of our analysis in a formula-
tion which is not limited to two dimensions.

PROPOSITION 2. If there is a single best point x in the attainable set A
(the intersection of the supply set W and the consumption set X),
and if there exists a plane L separating W from the set X(x) of
those points of the consumption set preferred or equivalent to x, in
such a way that L has only the point # in common with W as well
as with X(x), then the point x will be independently selected by a
profit-maximizing supplier faced with prices of which the ratios are
defined by the slope of L, and by a consumer-worker choosing a
best point obtainable at these prices from a basic income that just
enables him to reach a point of L.
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1.5 DECENTRALIZATION, INCENTIVES, AND ECONOMY
OF INFORMATION!

We have now examined two examples of decentralization in economic
decision making, one (Proposition 1) concerned with independent profit
maximization by production managers, and the other (Proposition 2)
with a separation of supply and consumption decisions. The highly ele-
mentary and mathematically trivial character of the reasoning employed
in the discussion of these cases should not conceal their central impor-
tance to economic theory. In both cases, the decentralization achieved
combines three aspects which deserve further comment.

In the first place, the decentralization wtilizes incemtives that are
naturally operative in the market system. If in our first case, instead of
department heads, we think of independent entrepreneurs operating in
markets where all prices are given, the profit maximization with which
they are “charged” corresponds to a motivation found strongly present
in many real-life entrepreneurs. Likewise, in our second case, the
preferences of the original undivided Robinson remain those of Robinson
the consumer and worker, while a “natural” entrepreneurial motivation
is instilled in Robinson the supplier.

Secondly, there is an ecomomy of information associated with the de-
centralization in both cases. The independent entrepreneurs of Proposi-
tion 1 need to know only the given prices and their own production sets
in order to take a correct action. Similarly, Robinson the supplier needs
to know only his own supply set and the prices. As illustrated in Figure
1.9d, he can blot out from his consciousness all knowledge of prefer-
ences, which knowledge is adequately summarized for his purposes by
the prices. Finally, as illustrated by Figure 1.9¢, as consumer, Robinson
needs to know only his own preferences and the income and price data
that summarize supply possibilities for him.

The informational economy achieved in the allocation of resources
through a price system has often been stressed by economists.? Because

1In the preparation of this section, I have greatly benefited from conversations with

Professor Leonid Hurwicz and from the reading of as yet unpublished manuscripts of his
authorship.

2 See, for instance, F. A. Hayek, “The Use of Knowledge in Society,”” American Economic
Review, vol. 35, September 1945, pp. 519-553. There is a striking similarity between the
summarization of supply and preference data through prices and the notions of sufficient and
efficient statistical estimation procedures, proposed by R. A. Fisher as devices for the
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the collection and processing of information has a cost in time, effort,
and other resources (which so far has rarely been introduced explicitly
into the models of economics) it would often be worth a sacrifice in
physical outputs to achieve informational economies of the type de-
scribed. However—and this is the third aspect that the two examples of
decentralization before us have in common—in these two cases the
economies of information handling are secured free of charge. No loss in
total profit in the first case, or in satisfaction level attained in the second
case, results from the decentralization. It is therefore an important ques-
tion of economic analysis to discern and characterize the situations, as
regards both the technology of production and the structure of prefer-
ences, in which this costless economy of information handling is
possible. The concept of a convex point set and the elementary properties
of such sets enable us to specify an important class of cases in which the
informational economies afforded by a price system are indeed obtained
free. We therefore now turn to a brief discussion of this class of point
sets.

1.6 CONVEX SETS AND THE PRICE IMPLICATIONS OF
OPTIMALITY

A point set C is called convex if, whenever 2 and » are two different
points of C, any point ¢ of the straight line segment 4b connecting 4 and

°G

FIGURE 1.10. Convex sets C, D, E, G and a nonconvex set F.

b also belongs to C. In Figure 1.10 each of the sets C, D, E is convex.
However, the set F is not convex, because the point ¢ on the segment ab
is outside F, while both 4 and & belong to F. The set G consisting of a

“redyction of data” and widely adopted and further developed by statisticians. The basic
idea there is to find a set of numbers which adequately summarizes a much more detailed
body of information for the purposes of a certain class of decisions. The idea of decentraliza-
tion of decisions among agents with different motivations is apparently peculiar to economics.
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single point and the empty set containing no point are both convex by
default: they do not contain two different points. It is easily seen from
the definition of convexity that both the intersection and the sum® of two
Or more convex sets are again Convex.

A slightly more restrictive concept is that of strict convexity. To define
it, let us call an interior point of a set C any point of C which is not a
boundary point. Reference to the definition of a boundary point will
show that an interior point ¢ of C is the center of a circle (sphere, hyper-
sphere) of positive radius (however small) which is entirely contained in
C. A set C is now called strictly convex if, whenever a4 and 4 are two
different points of C, every point of the straight line segment #b other
than 4 and 5 is an interior point of C. In two-dimensional space an
equivalent formulation is that with any two different points 4 and 4 a
strictly convex set C must contain an entire quadrangle (however thin)
of which all angles are larger than 0° and smaller than 180°, and of which
ab forms a diagonal. In Figure 1.10 C and G are the only strictly convex
sets.

In some cases, one is interested in strict convexity not of an entire
set, but for some part of its boundary. We shall say that a convex set 4
is strictly convex in a boundary point, a say, if whenever b is another point
of A or of its boundary all points of the line segment 4b other than zand b
are in the interior of 4. The set A in Figure 1.11 is strictly convex in a
but not in 4 or ¢.

The concepts of convexity and strict convexity are used in various
models to specify assumptions with regard to production possibilities
and with regard to the nature of preferences. In any “long-run prob-
lems,” that is, problems in which no fixed factors of production are
recognized, one would require that every production set contain the
origin, representing a state without inputs or outputs. Whenever this is
the case convexity of a production set excludes increasing returns to
scale and strict convexity definitely implies decreasing returns to scale.
For, by the definition of convexity, if both the origin and a point a
represent possible net output bundles (Figure 1.12) all points (such as
b) of the line segment joining 4 to the origin are possible. These points

1 'With respect to the sum, a simple analytic proof can be based on the fact that each point ¢
of a line segment 2b can be represented by ¢ =M + (1 — \)&, where X is a real number
(a “scalar”) such that 0 < \ < 1.
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achieve the same ratios of outputs to inputs as the point 4, at a lower
level of each output. The implication is that the productivity of mass
production methods does not exceed that of production on any lower
scale. Moreover, even if the point # represents (in a sense to be made
more precise in Section 3.6) the best that can be done with the given
inputs then, in the case of strict convexity of the production set, one can
still do slightly better (proportionally) with half of the inputs (as illus-
trated by the point ¢ in Figure 1.12).

Output
&
a
oC
b
Input o
FIGURE 1.11. Strict convexity of FIGURE 1.12. Constant (4) and decreasing
a set 4 in a point 4. (¢) returns to scale.

Such assumptions can lay no general claim to realism. They cannot
be used when we want to express the production advantages that ex-
perience has shown to be achievable by putting resources in the form of
large indivisible and coordinated pieces of capital equipment. Convexity
can be used with some degree of approximation only in problems where
the granularity arising from indivisibility of resources is unimportant.
The case for strict convexity of production sets is in general very weak
indeed. But in any case the principal reason for making a convexity
assumption lies not in its degree of realism but in the present state of our
knowledge. When one examines the main contents of received theory
of resource allocation and competitive markets it is found that its
propositions depend essentially on convexity assumptions with regard
to both production possibilities and preference structures (about which
more below). The convexity concept therefore enables us to state
minimum assumptions for the validity of an important part of existing
economic theory, thus helping to reduce this part of our knowledge to
its logical and mathematical essentials. An economy of thinking is
thereby achieved which shortens the statement of what we currently
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know and which may also enable us to perceive more clearly, and per-
haps approach with better equipment, the harder problems yet unsolved.
This about sums up the case for the use of the convexity assumption on
the production side.

On the consumption side the situation is not greatly different, al-
though one may feel that once the rather sweeping implications of an
individual preference ordering have been accepted the added restriction
implied in a convexity assumption is by comparison a minor one. To
formulate such assumptions, let us speak of a convex preference ordering
if (1) the set of alternatives to which the ordering applies is representéd
by a convex point set, and (2) whenever 4 is preferred to b, every point
of the line segment b, other than 5 itself, is preferred to . Let us also
speak of a strictly convex preference ordering if, besides (1) but instead of
(2), we have the stronger statement® (2’) that whenever # and b are
equivalent, all points of 2 other than a and 4 are preferred to &.

The first implication of the assumption of a convex (or strictly con-
vex) preference ordering is to preclude indivisible commodities. As
soon as a commodity can be consumed in two different amounts, con-
vexity of the consumption set implies that it can also be consumed in
any intermediate amount.?

In order to perceive further implications, we note that? if a preference
ordering is convex, then the set of all points that are preferred to any
given point is convex. If the preference ordering is also representable,
then the set of all points preferred or equivalent to a given point is like-
wise convex, and is closed as well.# If in addition the preference ordering
is strictly convex, we have the case described by Hicks and Allen as the
principle of the diminishing marginal rate of substitution,® differently
but equivalently expressed. Instead of specifying a particular type of

11f the preference ordering is representable, (2’) implies (2) but not conversely. However,
under the same condition (2) implies the weaker statement that, if 2 and & are equivalent,
every point of 45 is preferred or equivalent to b.

2 The only remaining possibility, that of a commodity which both has to and can only be
consumed in one unit, does not seem a realistic one.

3See also Kenneth J. Arrow, “‘An Extension of the Basic Theorems of Welfare Eco-
nomics,” Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Proba-
bility, University of California Press, Berkeley, Calif., pp. 507-532. See Lemma 1, p. 512.
This article will be quoted hereafter as “An Extension . . . .”

4 Provided the consumption set on which the preference ordering is defined is itself closed.

§J. R. Hicks and R. G. D. Allen, “A Reconsideration of the Theory of Value,” Economica,
vol. 1, 1934, pp. 52-76 and 196-219; and J. R. Hicks, Value and Capital, 2d ed., Claremont
Press, Oxford, 1946, chap. 1. Hicks’s statement (Value and Capital, p. 20) of this concept
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curvature of the indifference surfaces, it is specified that, as successive
additions and subtractions are made in any given fixed proportions to
the flows of consumption of the various goods, the desirability of the
resulting bundle can first increase (from  to 4 in Figure 1.13a) and can
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FIGURE 1.13a. Variation of the utility on a line seg-  riGURE 1.13b. Variation of the utility
ment in a strictly convex preference ordering. on a line segment in a convex but not

strictly convex preference ordering.

subsequently decrease (from & to ¢), but it cannot increase after it has
once decreased. Neither can it, in the case of strict convexity, remain
constant under two successive proportional net additions to flows, but

for the two-commodity case says that “the indifference curves must be convex to the axes.”
Perhaps this is a suitable point at which to caution the reader that the word ‘“‘convex” has
been used in somewhat different meanings in different contexts. The economist has used the
word convex with reference to curves (rather than to point sets) in the same meaning in
which the mathematician uses the expression “strictly convex function,” i.e., a function
such that linear interpolation between any two points always gives values higher than those
of the function itself. While this defines convexity with respect to only one coordinate axis
(that for the argument of the function), presumably an indifference curve “convex to the
axes” is required to be representable by a strictly convex function no matter which of the
two variables is chosen as the argument of the function. However, the notion of a convex or
strictly convex preference ordering defined on page 26 above is preferable for two reasons.
It takes into account not only the shape of the indifference curves but also the direction in
which one goes from a given curve to a preferred one (see footnote 1 on page 20). It also
remains applicable if oversaturation occurs in some part of the commodity space.
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the latter stipulation is not made in the case of convexity only (as
illustrated in Figure 1.13b).

Professor Hicks is entirely candid in justifying the principle of
diminishing marginal rate of substitution first of all by its simplicity
and by the fruitfulness of its implications. One can also read between
the lines an appeal to the observation that large responses of individual
rates of consumption to small price changes are rare. An inference from
this observation to the strict convexity of preference orderings is, of
course, valid only if the main postulate of the theory of consumers’
choice—that a consumer consistently chooses a best alternative within
the range of choices open to him—is placed beyond doubt. Without
that, other explanations for an observed absence of large quantity re-
sponses to small price changes are readily available.!

It seems, then, that the best view is to regard the convexity of pro-
duction sets and of preference structures as an empirical question to be
answered as well as one can in each situation. If this view is taken, the
main usefulness of the concept of convexity is that it emphasizes the
importance of that question by the strength of the conclusions that can
be derived from models in which convexity is, in fact, assumed. These
conclusions are obtained through a number of related mathematical
theorems about convex sets known as separation theorems, to which we
now turn.

! Arrow, on page 529 of “An Extension . . . ” (see footnote 3 on page 26), quotes a
further argument once contributed by me in an oral discussion of the convexity of consumers’
preference orderings. This argument for convexity (rather than strict convexity) runs as
follows :

If in the commodity space a point 2 is located on a straight line segment ¢ joining two
points & and ¢, and if the commodities whose rates of consumption differ as between 4 and ¢
are storable at no cost, then the bundle represented by & is preferred or equivalent to the
least preferred of the bundles 2 and ¢. The quoted reason is that the commodities in flow &
can be split up and in part temporarily stored so as to permit alternating flows of consump-
tion represented by # and ¢, respectively, during suitable fractions of time computable from
the position of b on 7.

It should be admitted that this argument, whatever it is worth, makes its point by mixing
categories that the theorist may prefer to keep separate. It incorporates a part of technology,
namely storage, with consumption. It ignores also the capital cost of storage. If the prefer-
ence ordering is thought of as applying to sustained flows of consumption, the argument also
introduces variation of flows into a static model, while ignoring the possibility of a preference
for variation in consumption as such. Finally, it does not apply to models with dated com-

modities designed to express consumers’ attitudes to consumption flows that change over
time,
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tHEOREM III.1. If x is 2 point outside a convex set A, then there is a
bounding plane of 4 through .

This theorem is illustrated in two dimensions by Figure 1.14. Since
we have not specified that the set A4 is closed, one may think of it as
containing all, part, or none of its boundary points. This means that
Theorem III.1 also covers cases as illustrated by Figure 1.15, where x is
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FIGURE 1.14. Illustration of Theorem III.1.  ricure 1.15. Illustration of Theorem 111.2.
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FIGURE 1.16a. Illustration FIGURE 1.16b. Two illustrations of Theorem II1.3
of Theorem I11.3 for for sets not both closed.
closed sets.

in the boundary of a convex set A, whenever x is not a point of 4. How-
ever, the conclusion of Theorem III.1 does not really depend on x being
excluded from A. The second theorem states this

taeorEM 111.2. If x is a boundary point of a convex set 4, then
there is a supporting plane of 4 through z.

The third theorem concerns the separation of two convex sets.

THEOREM II1.3. If 4 and B are two convex sets that have no point
in common, then there is a plane separating A and B.

Figure 1.16a illustrates this theorem in a case where both 4 and B
can be thought of as closed. Figure 1.16b shows two other cases to
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which Theorem III.3 can be applied if at least one of the sets is not
closed. Again, it is possible to reformulate Theorem II1.3 in such a way
that common boundary points are allowed under certain safeguards,* but
we shall not need to do so. One additional separation theorem, for con-
vex cones, will be formulated in Section 3.9 at the point where it is
needed. At this point we merely add that, if convexity is not assumed
for the sets in question, the statements in Theorems III.1-3 are not
generally true. For instance, another
X Food outpit|  look at Figure 1.8b on page 17
! suggests that, if the sets 4 and B are
brought somewhat closer together,
a separating line no longer exists.
We return to Robinson Crusoe
w X(x)\ to exhibit the service rendered by
---------------- |  Theorem III.3 ina simple case.? We
S| now disregard possible economies
5 of scale in production by assuming
the supply set W to be convex and
—— ";'F'E,'cm””” o, closed (Figure 1.17). Symmetri-
FIGURE 1.17. llustration of Proposition 3.1. cally, we assume that Robinson’s
preference ordering is convex and
representable by a continuous utility function, defined on a consump-
tion set X which is convex and closed. In addition to these assump-
tions, we keep up Robinson’s incentive by assuming that he nowhere
in the attainable set reaches a point of saturation. That is, outside
the attainable set A4 there are points preferred to all points of 4.
Finally, we assume that the attainable set is bounded but not empty.
As an intersection of closed sets, W and X, it is closed. Since the
utility function is continuous, there must be a best point® x in the
attainable set 4. As there is a better point #,, say, outside A, the

- LI

1 Safeguards are needed to rule out certain cases where both 4 and B are of smaller dimen-
sionality than the space under consideration (such as two lines segments in two-dimensional
space that intersect only in 2 common midpoint). For a proof of one such generalization of
Theorem 111.3, see Arrow, “An Extension . . . ,” sec. 10. (Note that a more refined
concept of interior point is employed by Arrow!)

2 In the following discussion leading to Propositions 3.1-3.3 extensive use has been made
of G. Debreu, “Valuation Equilibrium . . . .”” See footnote 2 on page 9.

3 See footnote 3 on page 15.
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convexity of the preference ordering implies! that x must be in the
boundary of the supply set W, as well as in the boundary of A.

Let us now consider the set of all points of the consumption set X
that are preferred to x. We shall call this the better-than-x set, and denote
it by X (x). This set is convex because of the convexity of the preference
ordering. It has no point in common with the attainable set A, because x
itself is already a best point within that set. Neither does it have any
point in common with the supply set W, because any point of W not in
A is not in the consumption set X, and the better-than-x set X(x) is de-
fined as a subset of the consumption set. It follows that there is a line L
separating the supply set W from the better-than-x set. Because of the
convexity of the preference ordering and the fact that x is not a point of
saturation, L runs through %, and through any point x’ equivalent to x
that may exist in the attainable set.? The following proposition formu-
lates the economic meaning of this provisional result without limitation
to only two dimensions.

PROPOSITION 3.1. If both the supply set and the consumption set are
closed and convex, if their intersection (the attainable set) is
bounded and not empty, and if the preference ordering is represent-
able and convex, then there is a best point x in the attainable set. If
the attainable set does not contain a point of saturation?® then any
best point of it lies in the boundary of the supply set. With any
such point x can be associated a system of prices, not all zero,
such that

(2) the maximum revenue attainable in the supply set is attained
in x, and

L If x were 1n the interior of W, then the line segment xx, (which is entirely in X because
X 15 convex) would contain points of W, and hence of 4, besides x. Because of the convexity
of the preference ordering, such points would be preferred to #, and x would not be a best
point of A, contrary to the premise.

2 Since any such point #’ is a point of W, and L a bounding line of W, x’ can only be in L
or on the “production side” of L. The latter alternative can be excluded. Using a point x,
of X (%) as in the footnote above, it would imply that a'x, had points other than x’ on the
production side of L. However, the convexity of the preference ordering would cause
such points to be preferred to x” and hence to #, contrary to the separation of W and be (x) by
L already established.

3 If there is a point x of saturation in the attainable set, the statements (a) and (b) in
the last sentence of the proposition remain trivially true provided all prices are equated to
zero,
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() the consumers’ outlay necessary to secure any point pre-
ferred to x is not less than that needed to secure x.

If more than one best point exists in the attainable set, one single
price system can be found such that statements (a) and (b) above
apply to all such points.

These statements, valuable as they are, fall short of the mark in two
respects. In the first place the statement labeled (b) does not preclude
that a point preferred to x could be procured at the same outlay as that
needed for x itself. If this were so one could not claim, as we wish to,
that x is a best point among all those whose cost to the consumer does
not exceed that of x. Secondly, if this difficulty were overcome we could
still have a situation where either for Robinson the supplier or for
Robinson the consumer (or for both) there is more than one point
which, within the appropriate set, maximizes the revenue, or the satis-
faction obtainable from the appropriate basic income (as the case may
be). In such a situation no price system can by itself provide a complete
decentralization of decisions. Communication in terms of quantities
between the two Robinsons remains needed to avoid incompatible
responses to the price system.

Of these two difficulties the second seems to be the less serious one.
Even if we think ahead of a market with many producers, resource
holders, and consumers there is likely to be quantitative commu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>