
LONG-TERM RISK: AN OPERATOR APPROACH 

Econometrica, Vol. 77, No. 1 (January, 2009), 177-234 

By Lars Peter Hansen and Jose A. Scheinkman1 

We create an analytical structure that reveals the long-run risk-return relationship 
for nonlinear continuous-time Markov environments. We do so by studying an eigen- 
value problem associated with a positive eigenfunction for a conveniently chosen family 
of valuation operators. The members of this family are indexed by the elapsed time be- 
tween payoff and valuation dates, and they are necessarily related via a mathematical 
structure called a semigroup. We represent the semigroup using a positive process with 
three components: an exponential term constructed from the eigenvalue, a martingale, 
and a transient eigenfunction term. The eigenvalue encodes the risk adjustment, the 

martingale alters the probability measure to capture long-run approximation, and the 

eigenfunction gives the long-run dependence on the Markov state. We discuss sufficient 
conditions for the existence and uniqueness of the relevant eigenvalue and eigenfunc- 
tion. By showing how changes in the stochastic growth components of cash flows induce 

changes in the corresponding eigenvalues and eigenfunctions, we reveal a long-run risk- 
return trade-off. 

Keywords: Risk-return trade-off, long run, semigroups, Perron-Frobenius theory, 
martingales. 

1. INTRODUCTION 

We study long-run notions of a risk-return relationship that feature the 
pricing of exposure to uncertainty in the growth rates of cash flows. In finan- 
cial economics, risk-return trade-offs show how expected rates of return over 
small intervals are altered in response to changes in the exposure to the under- 
lying shocks that impinge on the economy. In continuous-time modeling, the 
length of the interval is driven to zero to deduce a limiting local relationship. 
In contrast to the local analysis, we focus on what happens as the length of time 
between valuation and payoff becomes large. 

In a dynamic setting, asset payoffs depend on both the future state and on the 
date when the payoff will be realized. Risk-averse investors require compen- 
sation for their risk exposure, giving rise to risk premia in equilibrium pricing. 
There is a term structure of risk premia to consider. There are many recent 
developments in asset pricing theory that feature the intertemporal composi- 
tion of risk. The risk premia for different investment horizons are necessarily 
related, just as long-term interest rates reflect a compounding of short-term 
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rates. The risk counterpart to this compounding is most transparent in log- 
normal environments with linear state dynamics and constant volatility (e.g., 
see Hansen, Heaton, and Li (2008)). Our aim, however, is to support the analy- 
sis of a more general class of models that allow for nonlinearity in the state 
dynamics. Risk premia depend on both risk exposure and the price of that ex- 
posure. The methods we develop in this paper are useful for representing the 
exposure of cash flows and the price of that exposure in long horizons. 

While we are interested in the entire term structure of risk prices, the aim 
of this paper is to establish limiting behavior as investment horizons become 
large. There are two reasons for such an investigation. First, it provides a com- 
plementary alternative to the local pricing that is familiar from the literature 
on asset pricing. Comparison of the two allows us to understand the (aver- 
age) slope of the term structure of risk prices. Second, economics is arguably 
a more reliable source of restrictions over longer time horizons. Thus it is ad- 
vantageous to have tools that allow us to characterize how equilibrium risk 
prices are predicted to behave in the long run and how the prices depend on 
ingredients of the underlying model of the economy. 

The continuous-time local analysis familiar in financial economics is facili- 
tated by the use of stochastic differential equations driven by a vector Brown- 
ian motion and jumps. An equilibrium valuation model gives the prices of the 
instantaneous exposure of payoffs to these risks. Values over alternative hori- 
zons can be inferred by integrating appropriately these local prices. Such com- 
putations are nontrivial when there are nonlinearities in the evolution of state 
variables or valuations. This leads us to adopt an alternative approach based 
on an operator formulation of asset pricing. As in previous research, we model 
asset valuation using operators that assign prices today to payoffs on future 
dates. Since these operators are defined for each payoff date, we build an in- 
dexed family of such pricing operators. This family is referred to as a semigroup 
because of the manner in which the operators are related to one another.2 We 
show how to modify valuation operators in a straightforward way to accom- 
modate stochastic cash-flow growth. It is the evolution of such operators as 
the payoff date changes that interests us. Long-run counterparts to risk-return 
trade-offs are reflected in how the limiting behavior of the family of operators 
changes as we alter the stochastic growth of the cash flows. 

We study the evolution of the family of valuation operators in a continuous- 
time framework, although important aspects of our analysis are directly ap- 
plicable to discrete-time specifications. Our analysis is made tractable by as- 
suming the existence of a Markov state that summarizes the information in the 
economy pertinent for valuation. The operators we use apply to functions of 
this Markov state and can be represented as 

MMx) = E[MMXt)\X0 = x] 

2See Garman (1984) for an initial contribution featuring the use of semigroups in modeling 
asset prices. 
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for some process M appropriately restricted to ensure intertemporal consis- 
tency and to guarantee that the Markov structure applies to pricing. The prin- 
cipal restriction we impose is that M has a "multiplicative" property, resulting 
in a family of operators indexed by t that is a semigroup. 

A central mathematical result that we establish and exploit is a multiplicative 
factorization, 

(1) M, = exp(pOM,^^, 

where M is a martingale whose logarithm has stationary increments, and (f> is 
a positive function.3 While this decomposition is typically not unique, we show 
that there is at most one such decomposition that is of value to study long- 
term approximation. Intuitively, we may think of the scalar p as a deterministic 
growth rate and of the ratio of positive random variables {<f)(XQ))/{<\)(Xt)) as 
a transitory contribution. We construct this representation using a function <f> 
which is a principal (that is positive) eigenfunction of every operator M, in the 
semigroup, that is, 

(2) M,</>(*) = exp(pO<M*). 

In our analysis, we use the martingale M to change the probability measure 
prior to our study of approximation. The principal eigenfunction <f> used in 
constructing this change characterizes the limiting state dependence of the 
semigroup. 

We use the multiplicative factorization (1) to study two alternative long-run 
counterparts to risk-return trade-offs. It allows us to isolate enduring compo- 
nents to cash-flows or prices and to explore how these components are valued. 
For instance, cash flows with different stochastic growth components are val- 
ued differently. One notion of a long-run risk-return trade-off characterizes 
how the asymptotic rate of return required as compensation depends on the 
long-run cash-flow risk exposure. A second notion cumulates returns that are 
valued in accordance to a local risk-return trade-off. A corresponding long-run 
trade-off gives the asymptotic growth rates of alternative cumulative returns 
over long time horizons as a function of the risk exposures used to construct 
the local returns. 

Previous papers have explored particular characterizations of the term struc- 
ture of risk pricing of cash flows. (For instance, see Hansen, Heaton, and Li 

3 Alvarez and Jermann (2005) proposed the use of such a decomposition to analyze the long- 
run behavior of stochastic discount factors and cited an early version of our paper for proposing 
the link between this decomposition and principal eigenvalues and functions. We develop this 

connection, formally, and establish existence and uniqueness results for a general class of multi- 

plicative functionals. 
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(2008) and Lettau and Wachter (2007).) In this regard, local pricing character- 
izes one end of this term structure and our analysis characterizes the other end. 
Hansen, Heaton, and Li (2008) characterized the long-run cash-flow risk prices 
for discrete-time log-normal environments. Their characterization shares our 
goal of pricing the exposure to stochastic growth risk, but to obtain analytical 
results, they excluded potential nonlinearity and temporal variation in volatil- 
ity. Hansen, Heaton, and Li (2008) examined the extent to which the long-run 
cash-flow risk prices from a family of recursive utility models can account for 
the value heterogeneity observed in equity portfolios with alternative ratios of 
book value to market value. Our paper shows how to produce such pricing 
characterizations for more general nonlinear Markov environments. 

There is a corresponding equation to (2) that holds locally, obtained essen- 
tially by differentiating with respect to t and evaluating the derivative at t = 0. 
More generally, this time derivative gives rise to the generator of the semigroup. 
By working with the generator, we exploit some of the well known local char- 
acterizations of continuous-time Markov models from stochastic calculus to 
provide a solution to equation (2). While continuous-time models achieve sim- 
plicity by characterizing behavior over small time increments, operator meth- 
ods have promise for enhancing our understanding of the connection between 
short-run and long-run behavior. 

The remainder of the paper is organized as follows. In Sections 3 and 4 
we develop some of the mathematical preliminaries pertinent for our analy- 
sis. Specifically, in Section 3 we describe the underlying Markov process and 
introduce the reader to the concepts of additive and multiplicative function- 
als. Both type of functional are crucial ingredients to what follows. In Sec- 
tions 3.3, 3.4, and 3.5 we consider three alternative multiplicative functional 
that are pertinent in intertemporal asset pricing. In Section 3.3 we use a multi- 
plicative functional to model a stochastic discount factor process, in Section 3.4 
we introduce valuation functional that are used to represent returns over in- 
tervals of any horizon, and in Section 3.5 we use multiplicative functional to 
represent the stochastic growth components to cash flows. 

In Section 4 we study semigroups. Semigroups are used to evaluate contin- 
gent claims written on the Markov state indexed by the elapsed time between 
trading date and the payoff date. In Section 5 we define an extended genera- 
tor associated with a multiplicative functional, and in Section 6 we introduce 
principal eigenvalues and functions and use these objects to establish a rep- 
resentation of the form (1). We present approximation results that justify for- 
mally the long-run role of a principal eigenfunction and eigenvalue, and show 
that there is at most one appropriate eigenfunction in Section 7. Applications 
to financial economics are given in Section 8. Among other things, we derive 
long-term counterparts to risk-return trade-offs by making the valuation hori- 
zon arbitrarily large. Finally, in Section 9 we discuss sufficient conditions for 
the existence of the principal eigenvectors needed to support our analysis. 
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2. STOCHASTIC DISCOUNT FACTORS AND PRICING 

Consider a continuous-time Markov process [Xt : t > 0} and the (completed) 
filtration Tt generated by its histories. A strictly positive stochastic discount 
factor process {S, : t > 0} is an adapted (S, is Tt measurable) positive process 
that is used to discount payoffs. The date zero price of a claim to the payoff 77, 
at t is 

E[Stnt\Tol 

For each date t, this representation follows from the representation of positive 
linear functionals on appropriately constructed payoff spaces. The stochastic 
discount factor process is positive with probability 1 and satisfies So = 1 be- 
cause of the presumed absence of arbitrage. 

Let t < t be an intermediate trading date between date zero and date t. The 
time t + u payoff could be purchased at date zero or alternatively it could be 
purchased at date r with a prior date zero purchase of a claim to the date r 
purchase price. The law of one price guarantees that these two ways to acquire 
the payoff 77, must have the same initial cost. The same must be true if we 
scale the 77, by a bounded random variable available to the investor at date t. 
This argument allows us to infer the date r prices from the date zero prices. 
Specifically, for r < t, 

(3) Egi7,|*] 
is the price at time t of a claim to the payoff 77, at t. Thus once we have 
a date zero representation of prices at alternative investment horizons via a 
stochastic discount factor process, we may use that same process to represent 
prices at subsequent dates by forming the appropriate ratios of the date zero 
stochastic discount factors. This representation imposes temporal consistency 
in valuation enforced by the possibility of trading at intermediate dates.4 

We add a Markov restriction to this well known depiction of asset prices. 
Expression (3) can then be used to define & pricing operator §,. In particular, if 
i/f (Xt) is a random payoff at t that depends only on the current Markov state, 
its time zero price is 

(4) SMx) = E[Stifj(Xt)\x0 = x] 

expressed as a function of the initial Markov state. The fact that the price de- 
pends only on the current state restricts the stochastic discount factor process. 
While 5, can depend on the Markov process between dates 0 and t, we do not 

4This temporal consistency property follows formally from a "consistency axiom" in Rogers 
(1998). 
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allow it to depend on previous history of the Markov state; otherwise, this his- 
tory would be reflected in the date zero prices. As first remarked by Garman 
(1984), the temporal consistency in valuation insures the that family of such 
linear pricing operators {§, : t > 0} satisfies a semigroup property: So = I and 
S,+Mi/f(jt) = S,SW(/K*). In our asset pricing setting, the semigroup property is 
thus an iterated value property that connects pricing over different time hori- 
zons.5 

Consider again trading at the intermediate date r. Then Markov valuation 
between dates r and t can be depicted using the operator §,_T or it can be 
depicted using (3). As a consequence, St/ST should depend only on the Markov 
process between dates t and r. Moreover, 

(5) ^=St_T(0T), 

where 6T is a shift operator that moves the time subscript of the Markov process 
used in the construction of S,_T forward by r time units. Property (5) is a re- 
striction on functional built from an underlying Markov process, and we will 
call functional that satisfy property (5) and have initial value 1 multiplicative 
functionals. Later we will give convenient representations of such functional. 

Our approach is motivated by this multiplicative property of the stochastic 
discount factor and uses the connection between this multiplicative property 
and the semigroup property of the family of pricing operators. We will also use 
this multiplicative property to study the valuation of payoffs with stochastic 
growth components. To accommodate these other processes, we set up a more 
general framework in the next couple of sections. 

3. MARKOV AND RELATED PROCESSES 

We first describe the underlying Markov process, and then build other con- 
venient processes from this underlying process. These additional processes are 
used to represent stochastic discounting, stochastic growth, and returns over 
long horizons. 

3.1. Baseline Process 

Let [X, : t > 0} be a continuous-time, strong Markov process defined on a 
probability space {Q, J7, Pr} with values on a state space Do C R". The sam- 
ple paths of X are continuous from the right and with left limits, and we will 
sometimes also assume that this process is stationary and ergodic. Let Tt be 
completion of the sigma algebra generated by {Xu :0<u<t}. 

5 Garman (1984) allowed for non-Markov environments. In this case, the family of operators 
forms an "evolution semigroup." We adopt a Markov formulation of the law of one price for 
tractability. 
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One simple example is the following: 

Example 3.1 - Finite-State Markov Chain: Consider a finite-state Markov 
chain with states x; for j = 1, 2, . . . , N . The local evolution of this chain is gov- 
erned by an N x N intensity matrix U. An intensity matrix encodes all of the 
transition probabilities. The matrix exp(rtJ) is the matrix of transition proba- 
bilities over an interval t. Since each row of a transition matrix sums to unity, 
each row of U must sum to zero. The diagonal entries are nonpositive and rep- 
resent minus the intensity of jumping from the current state to a new one. The 
remaining row entries, appropriately scaled, represent the conditional proba- 
bilities of jumping to the respective states. 

When treating infinite-state spaces, we restrict the Markov process X to be 
a semimartingale. As a consequence, we can extract a continuous component 
Xc and what remains is a pure jump process XK The evolution of the jump 
component is given by 

dXJt= f y£(dy,dt), 
Jr" 

where £ = £(•, •; (o) is a random counting measure. That is, for each co, 
£(b, [0, t]\ (o) gives the total number of jumps in [0, t] with a size in the Borel 
set b in the realization o). In general, the associated Markov stochastic process 
X may have an infinite number of small jumps in any time interval. In what fol- 
lows we will assume that this process has a finite number of jumps over a finite 
time interval. This rules out most Levy processes, but greatly simplifies the no- 
tation. In this case, there is a finite measure r)(dy\x) dt that is the compensator 
of the random measure £. It is the (unique) predictable random measure, such 
that for each predictable stochastic function f(x, t\ o>), the process 

f f f(y,s;a>)ady,ds;a>)- I I f(y,s; (o)V[dy\Xs-(co)]ds 
Jo Jr" Jo Jr" 

is a martingale. The measure rj encodes both a jump intensity and a distribu- 
tion of the jump size given that a jump occurs. The jump intensity is the implied 
conditional measure of the entire state space Vo, and the jump distribution is 
the conditional measure divided by the jump intensity. 

We presume that the continuous sample path component satisfies the sto- 
chastic evolution 

dXf = &Xt-)dt + r(Xt.)dBt9 

where B is a multivariate JvBrownian motion and r(x)T(x) is nonsingular. 
Given the rank condition, the Brownian increment can be deduced from the 
sample path of the state vector via 

dBt = [r{xt.)T{xt_)rxr{xt_y[dxct - &xt_)dti 
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Example 3.2 - Markov Diffusion: In what follows we will often use the fol- 
lowing example. Suppose the Markov process X has two components, Xf and 
X°, where Xf is a Feller square root process and is positive, and X° is an 
Ornstein-Uhlenbeck process and ranges over the real line, 

dX{ = f /(i/ - X{) dt + Jxjaf dB{, 

with £ > 0, Xi > 0 for i = /, o, and 2f/i/ > (ay)2, where B = [*'] is a bivariate 
standard Brownian motion. The parameter restrictions guarantee that there 
is a stationary distribution associated with Xf with support contained in R+.6 
For convenience, we make the two processes independent. We use X° to model 
predictability in growth rates and Xf to model predictability in volatility. We 
normalize ao to be positive and ay to be negative. We specify ay to be negative 
so that a positive increment to Bft reduces volatility. 

3.2. Multiplicative Functionals 

A functional is a stochastic process constructed from the original Markov 
process: 

Definition 3.1: A functional is a real-valued process {Mt:t > 0} that is 
adapted (M, is Tt measurable for all t). We will assume that Mt has a version 
with sample paths that are continuous from the right with left limits. 

Recall that 0 denotes the shift operator. Using this notation, write Mu(6t) 
for the corresponding function of the X process shifted forward t time periods. 
Since Mu is constructed from the Markov process X between dates zero and 
u, Mu(6t) depends only on the process between dates t and date t + w. 

Definition 3.2: The functional M is multiplicative if Mo = 1 and Mt+U = 
Mu{6t)Mt. 

Products of multiplicative functionals are multiplicative functionals. We are 
particularly interested in strictly positive multiplicative functionals. In this case, 
one may define a new functional A = log(M ) that will satisfy an additive prop- 
erty. It turns out that it is more convenient to parameterize M using its loga- 
rithm A. The functional A will satisfy the following definition: 

6We could accommodate the case where Bf or B° is each multidimensional by considering a 
filtration {Ft} larger than the one generated by X. In effect, we would enlarge the state space in 

ways that were inconsequential to the computations that interest us. However, for simplicity we 
have assumed throughout this paper that {Tt} is the filtration generated by X. 
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Definition 3.3: A functional A is additive if Ao = 0 and At+U = Au(6t) + At 
for each nonnegative t and w.7 

Exponentials of additive functional are strictly positive multiplicative func- 
tionals. 

While the joint process {(Xt, At) : t > 0} is Markov, by construction the ad- 
ditive functional does not Granger cause the original Markov process. Instead 
it is constructed from that process. No additional information about the future 
values of X are revealed by current and past values of A. When X is restricted 
to be stationary, an additive functional can be nonstationary but it has station- 
ary increments. The following are examples of additive functional: 

Example 3.3: Given any continuous function t/>, At = il/(Xt) - il/(X0). 

Example 3.4: Let /3 be a Borel measurable function on Vo and construct 

At= f P(Xu)du, 
Jo 

where /0' p(Xu) du<oo with probability 1 for each t. 

Example 3.5: Form 

At= fy(Xu.ydBu, Jo 

where /0' \y(Xu)\2 du is finite with probability 1 for each t. 

Example 3.6: Form 

At= / j k(Xu, Xu-), 
0<u<( 

where k:VoxVo-^R, k(x, x) = 0. 

Sums of additive functional are additive functional. We may thus use Ex- 
amples 3.4, 3.5, and 3.6 as building blocks in a parameterization of additive 
functionals. This parameterization uses a triple (/3, y, k) that satisfies the fol- 
lowing situations: 

(a) j8 : Vo -> R and /J (3(XU) du<oo for every positive t. 

(b) y : Do -> Km and /0' |y(^J|2 du<oo for every positive t. 

7 Notice that we do not restrict additive functionals to have bounded variation as, for example, 
Revuz and Yor (1994). 
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(c) k:VoxT>o-+R, k(x, x) = 0 for all x e Vo, /exp(K(y, x))y]{dy\x) < oo 
for all x g Vo. 

Form 

A,= f fi{Xu)du+ f y{Xu_)'dBu+ T k(Xu,Xu.) 
J° J° 0<u<t 

= ffi(Xu)du Jo 

+ f y(xu-y[r(xu-mxu_)]-lr(xu-)'[dxcu - &xu-)du] 
Jo 

+ ^K(jrB,jrB_). 
0<u<t 

This additive functional is a semimartingale. 
While we will use extensively these parameterizations of an additive func- 

tional, they are not exhaustive as the following example illustrates. 

Example 3.7: Suppose that {Xt:t> 0} is a standard scalar Brownian mo- 
tion, suppose b is a Borel set in R, and define the occupation time of b up to 
time t as 

At= l{xueb)du. 
Jo 

At is an additive functional. As a consequence, the local time at a point r, 
defined as 

1 /" 
L, = Hm- / l[Xue(r-e,r+e))du, 

is also an additive functional. 

Since the logarithm of a strictly positive multiplicative process is an additive 
process, we will consider parameterized versions of strictly positive multiplica- 
tive processes by parameterizing the corresponding additive process. For in- 
stance, if M = txp(A) when A is parameterized by (/3, y, k), we will say that 
the multiplicative process M is parameterized by (j8, y, k). Notice that Ito's 
lemma guarantees that 

- - = fi(Xt.) H 
			 dt + y(Xt_) dBt 

+ exp[/c(ZMZ/_)]-l. 
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The multiplicative process {M, : t > 0} of this form is a local martingale if and 
only if 

(6) j8 + VLj- + 
J {exp[K(y, •)] - l)v(dy\-) = 0. 

For the remainder of this section we describe three types of multiplicative 
functionals that we use in our subsequent analysis. 

3.3. Stochastic Discount Factors 

In this section we write down two parameterized examples of multiplicative 
stochastic discount factors that we will use to illustrate our results. 

Example 3.8 - Breeden Model: Using the Markov process given in Exam- 
ple 3.2, we consider a special case of Breeden's (1979) consumption-based as- 
set pricing model. Suppose that equilibrium consumption evolves according to 

(7) dct = X°t dt + yfxjdf dB{ + #o dB% 

where c, is the logarithm of consumption Ct. Given our previous sign conven- 
tion that ao > 0, when do > 0 a positive shock dB° is unambiguously good 
news because it gives a favorable movement for consumption and its growth 
rate. Similarly, since ay < 0, when #/ > 0 a positive shock dBft is unambigu- 
ously good news because it reduces volatility while increasing consumption. 
Suppose also that investors' preferences are given by 

/^ 1- a 
			 -| 

expC-bO-1; 
			 dt 
1-a 

for a and b strictly positive. The implied stochastic discount factor is St = 

exp(y4J), where 

Ast = -a f Xys-bt-a I yfx!$fdBfs -a f $odB°s. 
Jo Jo Jo 

Example 3.9 - Kreps-Porteus Model: When investors have time-separable 
logarithmic utility and perfect foresight, the continuation value process W* for 
the consumption process satisfies the differential equation 

dW* 
(8) -^r 

= b(W;-ct), 

where b is the subjective rate of time discount. This equation is solved for- 
ward with an appropriate "terminal" condition. In constructing this differential 
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equation, we have scaled the logarithm of consumption by b for convenience. 
Let 

1 - a 

for a > 1 and notice that Wt is an increasing transformation of W*. Thus for the 
purposes of representing preferences, W can be used as an ordinally equivalent 
continuation value process. The process W satisfies the differential equation 

(9) ^i at 
= b(l-a)^f-^log[(l-a)^]-c/>) at \l~a / 
= b^{(a-l)cf + log[(l-a)^]}. 

Next suppose that investors do not have perfect foresight. We may now think 
of the right-hand sides of (8) and (9) as defining the drift or local means of the 
continuation values. As we know from Kreps and Porteus (1978) and Duffie 
and Epstein (1992), the resulting preferences cease to be ordinally equivalent. 
The first gives the recursive equation for continuation values that are expecta- 
tions of the discounted logarithmic utility. Instead we use the counterpart to 
the second differential equation: 

lim E(Wt+< ~ Wm = bW,{(a - l)c, + log[(l - a)W,}\, 

where a > 1. The resulting preferences can be viewed as a special case of the 
continuous-time version of the preferences suggested by Kreps and Porteus 
(1978) and of the stochastic differential utility model of Duffie and Epstein 
(1992) and Schroder and Skiadas (1999). If we were to take the continuation 
value process W as a starting point in a stochastic environment and transform 
back to the utility index W* using 

W7 = 
j4^1og[(l-aW], 

the resulting drift would include a contribution of the local variance as an ap- 
plication of Ito's lemma. For these preferences the intertemporal composition 
of risk matters. Bansal and Yaron (2004) have used this feature of preferences 
in conjunction with predictable components in consumption and consumption 
volatility as a device to amplify risk premia. This particular utility recursion we 
use imposes a unitary elasticity of intertemporal substitution as in the original 
preference specification with logarithmic utility. The parameter a alters risk 
prices as we will illustrate.8 

8Epstein and Zin (1989) used a more general discrete-time version of these preferences as a 

way to distinguish risk aversion from intertemporal substitution. 
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Suppose again that consumption evolves according to equation (7). Conjec- 
ture a continuation value process of the form 

Wt = 
			 exp[(l - a)(\NfX{ + \noX? + ct + w)]. 1 - a 

The coefficients satisfy 

(l-a)cr? , (l-a)#2 
-f/w/ + 
			 

j 
- (w'} 

, 
+ (1 " a)#/°/w/ + 
			 

j 
- = bW/' 

-fowo + l = bwo, 

f/i/w, + £oXoWo + 
			 
2 
- "<w*)2 

+ (1 - a)#ocrowo + 
(1"2a)#' 

= bw. 

The equation for w/ is quadratic and there are potentially two solutions. The 
solution that interests us is 

w/ = ((a-l)oy#/ + b + £/ 

- 
^(a 

- Dvf&f + b + €f¥ - (a - l)2o-/2^)/((i 
_ 

a)^). 

See Appendix A. Furthermore, w0 > 0 and, as we show in Appendix A, W/ < 0. 
The stochastic discount factor is the product of two multiplicative function- 

als. One has the same form as the Breeden model with a logarithmic instanta- 
neous utility function. It is the exponential of 

Af = -f X°ds-bt- f JxidfdBfs- f dodB°s. 
Jo Jo Jo 

The other functional is a martingale constructed from the forward-looking con- 
tinuation value process. It is the exponential of 

A? = 
(l-a)j yfxii&f + WfartdBf + 

a-edfWo 
+ Wo^dB0, 

_ !iz«! 
^ Jo f x!«, + ,mUs - o-W. 

z 
+ «.*>',. 

^ Jo z 

We next consider a variety of ways in which multiplicative functional can be 
used to build models of asset prices and to characterize the resulting implica- 
tions. 
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3.4. Valuation Functionals and Returns 

We use a special class of multiplicative functionals called valuation function- 
als to characterize local pricing. The result of this analysis will be the Markov 
version of a local risk-return trade-off. A valuation functional is constructed to 
have the following property. If the future value of the process is the payout, the 
current value is the price of that payout. For instance, a valuation process could 
be the result of continually reinvesting dividends in a primitive asset. Equiva- 
lently, it can be constructed by continually compounding realized returns to an 
investment. To characterize local pricing, we use valuation processes that are 
multiplicative functionals. Recall that the product of two multiplicative func- 
tionals is a multiplicative functional. The following definition is motivated by 
the connection between the absence of arbitrage and the martingale properties 
of properly normalized prices. 

Definition 3.4: A valuation functional [Vt : t > 0} is a multiplicative func- 
tional such that the product functional {VtSt : t > 0} is a martingale. 

Provided that V is strictly positive, the associated gross returns over any hori- 
zon u can be calculated by forming ratios: 

R - -Y»*L 
'•'+u - 

vt_ 
 

This increment in the value functional scaled by the current (pre-jump) value 
gives an instantaneous net return. The martingale property of the product VS 
gives a local pricing restriction for returns. 

To deduce a convenient and familiar risk-return relation, consider the mul- 
tiplicative functional M = VS, where V is parameterized by (/3V, yv, kv) and 
{St : t > 0} is parameterized by (/35, ys, ks). In particular, the implied net return 
evolution is 

+ exp[/ct)(Z,,Z,_)]-l. 

Thus the expected net rate of return is 

e. = Pv + ^j- + 
J(txp[Kv(y, 

•)] - 1)7,(^1-). 

Since both V and S are exponentials of additive processes, their product is 
the exponential of an additive process and is parameterized by 

j8 = )8l, + )8J, 
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y = yv + ys, 

K= Kv + Ks. 

Proposition 3.1: A valuation functional parameterized by (/3V, yv, kv) satis- 
fies the pricing restriction 

(10) pv 4- ps = 
-l7v+2yA 

- 
j(exp[Kv(y, 

•) + Ks(y, •)] - l)v(dy\-). 

Proof: The proof follows from the definition of a valuation functional and 
the martingale restriction (6). Q.E.D. 

This restriction is local and determines the instantaneous risk-return rela- 
tion. The parameters (yv, kv) determine the Brownian and jump risk exposure. 
The following corollary gives the required local mean rate of return: 

COROLLARY 3.1: The required mean rate of return for the risk exposure 
(yv, kv) is 

l-v I2 
£v = -Ps -Jv'Js 
			 

2~ 

- / (exp[Kv(y, •) + Ks(y, •)] - expKCy, -)])v(dy, •). 

The vector -ys contains the factor risk prices for the Brownian motion com- 
ponents. The function ks is used to price exposure to jump risk. Then ev is the 
required expected rate of return expressed as a function of the risk exposure. 
This local relation is familiar from the extensive literature on continuous-time 
asset pricing.9 In the case of Brownian motion risk, the local risk price vector 
of the exposure to risk is given by -ys. 

A valuation functional is typically constructed from the values of a self- 
financing strategy. Not every self-financing strategy results in a valuation which 
can be written as a multiplicative functional, but the class of (multiplicative) 
valuation functionals is sufficiently rich to extract the implied local risk prices. 
For this reason, we restrict ourselves in this paper to (multiplicative) valuation 
functionals. 

Example 3.10 - Breeden Example (Continued): Consider again the Mar- 
kov diffusion Example 3.2 with the stochastic discount factor given in Exam- 

9Shaliastovich and Tauchen (2005) presented a structural model of asset prices in discrete time 
with a Levy component to the risk exposure. The continuous-time counterpart would include 
Markov processes with an infinite number of jumps expected in any finite time interval. 
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pie 3.8. This is a Markov version of Breeden's model. The local risk price for 
exposure to the vector of Brownian motion increments is 

7s-[ a#o J 
and the instantaneous risk-free rate is 

b + 
a,0-a2(^ 

+ 
(^)2). 

Consider a family of valuation processes parameterized by (/3, y), where 
y(x) = (y/xjyf, jo)- To satisfy the martingale restriction, we must have 

P(x) = b + axo - -[xf(yf - a^)2 + (yo - a#0)2]. 

Example 3.11 - Kreps-Porteus Model (Continued): Consider again the 
Markov diffusion Example 3.2 with the stochastic discount factor given in Ex- 
ample 3.9. The local risk price for exposure to the vector of Brownian motion 
increments is 

-y 75 rv^z + ̂ -iyw0/! 75 L a#0 + (a-l)w0or0 J 

and the instantaneous risk-free rate is 

b + xo - -[xf(#f)2 + (#o)2] - (a - l)Xf&f(tif + w/oy) 

-(a-l)do(do + woo-o). 

In particular, the local risk prices are larger than for their counterparts in the 
Breeden (1979) model when do and #/ are both positive.10 

As we have seen, alternative valuation functionals reflect alternative risk ex- 
posures. The examples we just discussed show how the required expected rate 
of return (/3V) for a given local risk exposures (%,, kv) depends on the under- 
lying economic model and the associated parameter values. The methods we 
will describe allow us to characterize the behavior of expectations of valuation 
functionals over long horizons. 

10When d/ is positive, Kleshchelski and Vincent (2007) showed that the real term structure 
will be often downward sloping. 
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3.5. Growth Functionals 

In our analysis of valuation, we will investigate the pricing of cash flows as we 
extend the payoff horizon. To investigate the value implications for cash flows 
that grow stochastically, we introduce a reference growth process [Gt : t > 0} 
that is a positive multiplicative functional. Consider a cash flow that can be 
represented as 

(11) Dt = Gti/j(Xt)D0 

for some initial condition Do, where G is a multiplicative functional. The initial 
condition is introduced to offset the restriction that multiplicative functionals 
are normalized to be unity at date zero. Heuristically, we may think of i/s(X) 
as the stationary component of the cash flow and of G as the growth com- 
ponent.11 As we will illustrate, however, the covariance between components 
sometimes makes this interpretation problematic. 

The fact that the product of multiplicative functionals is a multiplicative 
functional implies that the product of a stochastic discount factor functional 
and a growth functional is itself multiplicative. This property facilitates the 
construction of valuation operators designed for cash-flow processes that grow 
stochastically over time. 

In Section 2 we emphasized the connection between the multiplicative prop- 
erty of stochastic discount factors and the semigroup property of pricing op- 
erators. In the next section we discuss how multiplicative functionals give rise 
to semigroups. This development lays the groundwork for considering a vari- 
ety of ways in which multiplicative functionals and their implied semigroups 
can be used to characterize the implications of asset pricing models over long 
horizons. 

4. MULTIPLICATIVE FUNCTIONALS AND SEMIGROUPS 

Given a multiplicative functional M, our aim is to establish properties of the 
family of operators 

(12) MMx) = E[Mtif,(X<)\Xo = x\. 

4.1. Semigroups 

Let L be a Banach space with norm || • || and let {T, : t > 0} be a family of 
operators on L. The operators in these family are linked according to the fol- 
lowing property: 

11 One can easily write down securities with a payout that cannot be represented as in equation 
(11), but we are interested in deriving properties of the pricing of securities with a payout as in 
(11) to evaluate alternative models and parameter configurations. 
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Definition 4.1: A family of linear operators {T, : t > 0} is a one-parameter 
semigroup if To = I and Tt+S = T,T5 for all s, t > 0. 

One possibility is that these operators are conditional expectations oper- 
ators, in which case this link typically follows from the law of iterated ex- 
pectations restricted to Markov processes. We will also use such families of 
operators to study valuation and pricing. As we argued in Section 2, from a 
pricing perspective, the semigroup property follows from the Markov version 
of the law of iterated values, which holds when there is frictionless trading at 
intermediate dates. 

We will often impose further restrictions on semigroups such as follows: 

Definition 4.2: The semigroup {¥,:*> 0} is positive if for any t > 0, T, if/ > 
0 whenever if/ > 0. 

4.2. Multiplicative Semigroup 
The semigroups that interest us are constructed from multiplicative func- 

tionals. 

Proposition 4.1: Let Mbea multiplicative functional such that for each i/j € 
L, E[Mtifj (X,)\Xo = jc] 6 L. Then 

Mtilj(x) = E[Mtilf(Xt)\Xo = x] 

is a semigroup in L. 

Proof: For </> € L, M0(/> = if/ and 

Mt+Uil,(x) = E[E[Mt+ui/,(Xt+u)\Ft]\X0 = x] 
= E[E[MtMu(et)iff(Xu(6t))\^t] \X0 = x] 
= E[MtE[Mu(et)iKXu(dt))\X0(6t)]\X0 = x] 
= E[MtM«*l>(Xt)\X0 = x] 
= MtMu*Kx)9 

which establishes the semigroup property. Q.E.D. 

In what follows we will refer to semigroups constructed from multiplicative 
functional as in this proposition as multiplicative semigroups. If the multiplica- 
tive process is a stochastic discount factor, we will refer to the corresponding 
multiplicative semigroup as the pricing semigroup. Other semigroups also in- 
terest us. 
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4.3. Valuation Semigroups 

Associated with a valuation functional V is a semigroup {V, : t > 0}. For any 
such valuational functional, we will derive the asymptotic growth rates of the 
implied cumulative return over long time horizons. The limiting growth rate 
expressed as a function of the risk exposures (yv, kv) gives one version of long- 
term risk-return trade-off. While measurement of long-horizon returns in log- 
linear environments has commanded much attention, operator methods can 
accommodate volatility movements as well. (See Bansal, Dittmar, and Kiku 
(2008) for a recent addition to this literature.) 

Our characterization of the long-run expected rate of return is motivated by 
our aim to quantify a risk-return relation. In contrast, Stutzer (2003) used the 
conditional expectation of a valuation functional raised to a negative power to 
develop a large deviation criterion for portfolio evaluation over large horizons. 
He also related this formulation to the familiar power utility model applied to 
terminal wealth appropriately scaled. Since a multiplicative functional raised 
to a negative power remains multiplicative, the limits we characterize are also 
germane to his analysis. 

In what follows we will suggest another way to represent a long-term risk 
return trade-off. 

4.4. Semigroups Induced by Cash-Flow Growth 

We study cash flows with a common growth component using the semigroup 

Q,<A (x) = E[GtSMXt)\X0 = x] 

instead of the pricing semigroup {§,} constructed previously. The date zero 

price assigned to Dt is D0Q(iIj(X0). More generally, the date r price assigned 
to Dt+T is D0GTQtilj(XT). Thus the date r price to (current period) payout ratio 
is 

DoGTQtMXT) = Q,ftlTT) 
DT if>(XT) 

provided that ifj{XT) is different from zero. For a security such as an equity 
with a perpetual process of cash payouts or dividends, the price-dividend ratio 
is the integral of all such terms for t > 0. Our subsequent analysis will charac- 
terize the limiting contribution to this value. The rate of decay of Qt^(XT) as 
t increases will give a measure of the duration of the cash flow as it contributes 
to the value of the asset. 

This semigroup assigns values to cash flows with common growth component 
G but alternative transient contributions ip. To study how valuation is altered 
when we change stochastic growth, we will be led to alter the semigroup. 
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When the growth process is degenerate and equal to unity, the semigroup is 
identical to the one constructed previously in Section 2. This semigroup is use- 
ful in studying the valuation of stationary cash flows including discount bonds 
and the term structure of interest rates. It supports local pricing and general- 
izations of the analyses in Backus and Zin (1994) and Alvarez and Jermann 
(2005) that use fixed income securities to make inferences about economic 
fundamentals. This semigroup offers a convenient benchmark for the study of 
long-term risk just as a risk-free rate offers a convenient benchmark in local 
pricing. 

The decomposition (11) used in this semigroup construction is not unique. 
For instance, let cp be a strictly positive function of the Markov state. Then 

Dt = Gtil/(Xt)D0= \Gt \[DO(p(Xo)]. L (p(xo)]i<p(xt)] 
Since (if/(Xt))/((p(Xt)) is a transient component, we can produce (infinitely) 
many such decompositions. For decomposition (11) to be unique, we must thus 
restrict the growth component. 

A convenient restriction is to require that G, = exp(8t)Gt, where G is a mar- 
tingale. With this choice, by construction G has a constant conditional growth 
rate 8. Later we show how to extract martingale components, G's, from a large 
class of multiplicative functional G. In this way we will establish the existence 
of such a decomposition. Even with this restriction, the decomposition will not 
necessarily be unique, but we will justify a particular choice. 

We investigate long-term risk by changing the reference growth functional. 
These functional capture the long-term risk exposure of the cash flow. Our 
approach extends the analysis of Hansen, Heaton, and Li (2008) beyond log- 
linear environments. As we will demonstrate, the valuation of cash flows with 
common reference growth functional will be approximated by a single dom- 
inant component when the valuation horizon becomes long. Thus the contri- 
butions to value that come many periods into the future will be approximated 
by a single pricing factor that incorporates an adjustment for risk. Changing 
the reference growth functional alters the long-term risk exposure with a cor- 
responding adjustment in valuation. Each reference growth functional will be 
associated with a distinct semigroup. We will characterize long-term risk for- 
mally by studying the limiting behavior of the corresponding semigroup. 

As we have just seen, semigroups used for valuing growth claims are con- 
structed by forming products of two multiplicative functionals: a stochastic dis- 
count factor functional and a growth functional. Pricing stationary claims and 
constructing cumulative returns lead to the construction of alternative multi- 
plicative functionals. Table I gives a summary of the alternative multiplicative 
functionals and semigroups. For this reason, we will study the behavior of a 
general multiplicative semigroup: 

Mtil/(x) = E[Mtiff(Xt)\X0 = x] 
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TABLE I 

Alternative Semigroups and Multiplicative Functionals 

Object Multiplicative Functional Semigroup 

Stochastic discount factor S {§,) 
Cumulated return V {V,) 
Stochastic growth G {G,) 
Valuation with stochastic growth Q = GS {Q,} 

for some strictly positive multiplicative functional M. 
The next three sections establish some basic representation and approxima- 

tion results for multiplicative semigroups that are needed for our subsequent 
economic analysis of long-term risk. An important vehicle in this study is the 
extended generator associated with a multiplicative process. This generator is a 
local (in time) construct. We develop its properties in Section 5. In Section 6 
we show how to use a principal eigenfunction of this extended generator to 
construct our basic multiplicative decomposition (1). As we demonstrate in 
Section 7, an appropriately chosen eigenfunction and its associated eigenvalue 
dictate the long-term behavior of a multiplicative semigroup and the corre- 
sponding multiplicative functional. After establishing these basic results, we 
turn to the featured application in our paper: How do we characterize the long- 
term risk-return trade-off? 

5. GENERATORS 

In this section we define a notion of an extended generator associated with a 
multiplicative functional. The definition parallels the definition of an extended 
(infinitesimal) generator associated with Markov processes as in, for example, 
Revuz and Yor (1994). Our extended generator associates to each function \fj 
a function x such that Mtx(Xt) is the "expected time derivative" of Mt^j{Xt). 

Definition 5.1: A Borel function i/j belongs to the domain of the extended 
generator A of the multiplicative functional M if there exists a Borel function 
X such that Nt = Mtil/(Xt) - il/(X0) - /0' Msx(Xs) ds is a local martingale with 
respect to the filtration {Tt : t > 0}. In this case, the extended generator assigns 
the function x to i// and we write x = ^{l/- 

For strictly positive multiplicative processes M , the extended generator is 
(up to sets of measure zero) single valued and linear. In the remainder of the 
paper, if the context is clear, we often refer to the extended generator simply 
as the generator. 

Our first example deals with Markov chains: 
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Example 5.1 - Markov Chain Generator: Recall the finite-state Markov 
chain Example 3.1 with intensity matrix U. Let u,y denote entry (/,;) of this 
matrix. Consider a multiplicative functional that is the product of two compo- 
nents. The first component decays at rate /3; when the Markov state is x,-. The 
second component only changes when the Markov process jumps from state i 
to state /, in which case the multiplicative functional is scaled by exp[/c(x;, x,)]. 
From this construction we can deduce the generator A for the multiplicative 
semigroup depicted as a matrix with entry (/, ;): 

" _ JU//-/3/, if / = ;, 
aij " _ 

{ uiy exp[K(x;, X,-)], if i # ;. 

This formula uses the fact that in computing the generator we are scaling prob- 
abilities by the potential proportional changes in the multiplicative functional. 
The matrix A is not necessarily an intensity matrix. The row sums are not neces- 
sarily zero. The reason for this is that the multiplicative functional can include 
pure discount effects or pure growth effects. These effects can be present even 
when the /3/s are zero, since it is typically the case that 

]T u,y exp[K(x;, X,-)] ̂ -uih 

The unit function is a trivial example of a multiplicative functional. In this 
case the extended generator is exactly what is called in the literature the ex- 
tended generator of the Markov process X. When X is parameterized by 
(77, £, T), Ito's formula shows that the generator has the representation 

(13) ^,m.^i+iu^w^i) 
+ f[<Ky)-<Kx)Mdy\x), 

where X = FF' provided <f> is C2 and the integral in (13) is finite. 
Recall our earlier parameterization of an additive functional A in terms of 

the triple (/3, y, k). The process M = txp(A) is a multiplicative functional. We 
now display how to go from the extended generator of the Markov process X, 
that is, the generator associated with M = 1, to the extended generator of the 
multiplicative functional M. The formulas below use the parameterization for 
the multiplicative process to transform the generator of the Markov process 
into the generator of the multiplicative semigroup and are consequences of 
Ito's lemma: 

(a) Jump measure: txp[K(y, x)]r](dy\x). 
(b) First derivative term: £(x) + F(x)y(x). 
(c) Second derivative term: 2(x). 
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(d) Level term: fi(x) + \y(x)\2/2 + f(exp[K(y,x)] - l)ri(dy,x). 
The Markov chain example that we discussed above can be seen as a special 
case where y, f , and F are all null. 

There are a variety of direct applications of this analysis. In the case of the 
stochastic discount factor introduced in Section 3.3, the generator encodes 
the local prices reflected in the local risk-return trade-off of Proposition 3.1. 
The level term that arises gives the instantaneous version of a risk-free rate. 
In the absence of jump risk, the increment to the drift gives the factor risk 
prices. The function k shows us how to value jump risk in small increments in 
time. 

In a further application, Anderson, Hansen, and Sargent (2003) used this 
decomposition to characterize the relation among four alternative semi- 
groups, each of which is associated with an alternative multiplicative process. 
Anderson, Hansen, and Sargent (2003) featured models of robust decision 
making. In addition to the generator for the original Markov process, a second 
generator depicts the worst-case Markov process used to support the robust 
equilibrium. There is a third generator of an equilibrium pricing semigroup, 
and a fourth generator of a semigroup used to measure the statistical discrep- 
ancy between the original model and the worst-case Markov model. 

6. PRINCIPAL EIGENFUNCTIONS AND MARTINGALES 

As stated in the Introduction, we use a decomposition of the multiplicative 
functional to study long-run behavior. We construct this decomposition using 
an appropriate eigenfunction of the generator associated to the multiplicative 
functional. 

Definition 6.1: A Borel function <f> is an eigenfunction of the extended gen- 
erator A with eigenvalue p if A<£ = p</>. 

Intuitively, if <f> is an eigenfunction, the "expected time derivative" of 
Mt(f>(Xt) is pMt<f){Xt). Hence the expected time derivative of exp(-p x 
t)Mt<j){Xt) is zero. The next proposition formalizes this intuition. 

Proposition 6. 1 : Suppose that </> is an eigenfunction of the extended generator 
associated with the eigenvalue p. Then 

exp(-pOM,<£(*,) 

is a local martingale. 

Proof: Nt = Mtif/(Xt) - if/(X0) - p /0' Ms\ff{Xs) ds is a local martingale that 
is continuous from the right with left limits and thus is a semimartingale (Prot- 
ter (2005, Chap. 3, Corollary to Theorem 26)); hence Y, = Mt4>(Xt) is also a 
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semimartingale. Since dNt = dYt - pYt- dt, integration by parts yields 

exp(-pt)Yt-YQ = - pexp(-ps)Ysds + exp(-ps)dYs 
Jo Jo 

= 
j exp(-ps)dNs. QED 

It is the strictly positive eigenfunctions that interest us. 

Definition 6.2: A principal eigenfunction of the extended generator is an 
eigenfunction that is strictly positive. 

Corollary 6.1: Suppose that 4> is a principal eigenfunction with eigenvalue 
pfor the extended generator of the multiplicative functional M. Then this multi- 
plicative functional can be decomposed as 

M, = exp(Po4^1 l<p(Xt) \ l<p(Xt) \ 

where Mt = cxp(-pt)Mt((l)(Xt))/((f)(X0)) is a local martingale and a multi- 
plicative functional 

Let M be the local martingale from Corollary 6.1. Since M is bounded from 
below, the local martingale is necessarily a supermartingale and thus for t > u, 

E(Mt\Pu)<Mu. 

We are primarily interested in the case in which this local martingale is actually 
a martingale: 

Assumption 6.1: The local martingale M is a martingale. 

For Assumption 6.1 to hold, it suffices that the local martingale N introduced 
in the proof of Proposition 6.1 is a martingale. In Appendix C we give primitive 
conditions that imply Assumption 6.1. 

When Assumption 6.1 holds, we may use M to find a new probability on the 
sigma algebra generated by Tt for each t. Later, we will use this new probability 
to establish approximation results that hold for long horizons. 

We did not restrict <f> to belong to the Banach space L where the semigroup 
{M, : t > 0} was defined. Since M is a supermartingale, Mt<t> := exp(pO</>(*) x 
E[Mt\Xo = x] is always well defined. In addition, the semigroup {M, : t > 0} is 
well defined at least on the Banach space of bounded Borel measurable func- 
tions. Moreover: 
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Proposition 6.2: If cf) is a principal eigenfunction with eigenvalue p for 
the extended generator of the multiplicative functional M, then for each t > 0, 
exp(pO<£ > Mt(f>. If in addition, Assumption 6.1 holds then, for each t>0, 

(14) M,</> = exp(pO0. 

Conversely, if </> is strictly positive, M,</> is well defined for t > 0, and (14) holds, 
then M is a martingale. 

Proof: 

1 > E[Mt\X0 = x]= eX^("f) 
* 
E[Mt<KX,)\X0 = x] 

</>(*) 

with equality when M is a martingale. Conversely, using (14) and the multi- 
plicative property of M one obtains, 

E[exp(-pt)Mt<KXt)\fs] = exp(-pt)MsE[Mt-s(0s)4>(Xt)\Xs] 
= exp(-ps)Ms<t>(Xs). Q.E.D. 

Proposition 6.2 guarantees that under Assumption 6.1 a principal eigenfunc- 
tion of the extended generator also solves the principal eigenvalue problem 
given by (14). Conversely, a strictly positive solution to the principal eigenvalue 
problem (14) yields a decomposition as in Corollary 6.1, where the process M 
is actually a martingale. 

In light of the decomposition given by Corollary 6.1, when the local mar- 

tingale M is a martingale, we will sometimes refer to p as the growth rate 
of the multiplicative functional M, to M as its martingale component, and 
to {(j){Xo))/((f){Xt)) as its transient or stationary component. This decom- 
position is typically not unique, however. As we have defined them, there 
may be multiple principal eigenfunctions even after a normalization. Each of 
these principal eigenfunctions implies a distinct decomposition, provided that 
we establish that the associated local martingales are martingales. Since the 
martingale and the stationary components are correlated, it can happen that 
E[Mt((t)(Xo))/(<l)(Xt))\Xo = x] diverges exponentially, challenging the inter- 
pretation that p is the asymptotic growth rate of the semigroup. We take up 
this issue in the next section. 

Remark 6.1: There are well known martingale decompositions of additive 
functionals with stationary increments used to deduce the central limit approx- 
imation and to characterize the role of permanent shocks in time series. The 
nonlinear, continuous-time Markov version of such a decomposition is 

At = (ot + mt - v{Xt) + v{XQ), 
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where {mt : t > 0} is a martingale with stationary increments (see Bhattacharya 
(1982) and Hansen and Scheinkman (1995)). Exponentiating this decomposi- 
tion yields another decomposition similar to the one in Corollary 6.1 except 
that the exponential of a martingale is not a martingale. When the martingale 
increments are constant functions of Brownian increments, then exponential 
adjustment has simple consequences.12 In particular, the exponential adjust- 
ment is offset by changing ay. With state dependent volatility in the martingale 
approximation, however, there is no longer a direct link between the additive 
and the multiplicative decompositions. In this case, the multiplicative decom- 
position of Corollary 6.1 is the one that is valuable for our purposes. 

Example 6.1 - Markov Chain Example: Recall that for a finite-state space, 
we can represent the Markov process in terms of a matrix U that serves as 
its generator. Previously we constructed the corresponding generator A of the 
multiplicative semigroup. For this example, the generator is a matrix. A princi- 
pal eigenvector is found by finding an eigenvector of A with strictly positive en- 
tries. Standard Perron-Frobenius theory implies that if the chain is irreducible, 
since the multiplicative functional is strictly positive, there is such an eigenvec- 
tor which is unique up to scale. 

While there is uniqueness in the case of an irreducible finite-state chain, 
there can be multiple solutions in more general settings. 

Example 6.2 - Markov Diffusion Example (Continued): Consider a multi- 
plicative process M = exp(A), where 

(15) ,4, = j3f+ f pfX{ds+ f poX°ds+ fyfxiyfdB{+ f yodB°s, 
Jo Jo Jo Jo 

where Xf and X ° are given in Example 3.2. 
Guess an eigenfunction of the form exp(C/JC/ + coxo). The corresponding 

eigenvalue equation is 

y2r y2 
p = (3 + pfXf + lloxo + 

^-xf 
+ 

^ 
+ Cf[tjf(xf - xf) + xfyf(Tf] + co[€o(xo - xo) + yoao] 

o2 a2 
+ (C/)2*/y + (co)2y. 

12This is the case studied by Hansen, Heaton, and Li (2008). 



LONG-TERM RISK 203 

This generates two equations: one that equates the coefficients of xf to zero 
and another that equates the coefficients of xo to zero: 

y2f y. 0 = Bf + -j- + cf{yf*f - fr) + (c/)2^-, 

The solution to the first equation is 

tff ~ Vf<rf) ± Jitf-ywr-ojaPf + yj) 
<16> c'= 
			 

-^ 

			 

provided that 

(f/ -y/ay)2- 0^(2)3/ + t^)>0. 

The solution to the second equation is 

(17) co = 
^. So 

The resulting eigenvalue is 

y2 a2 
p = j8 + 

y 
+ c/f/jc/ + co(£oxo + yoao) + 

(co)2y 
. 

Write 

M, »> , expCc^f - 
			 + c^) - M, »> = exp(-pf)M( , - ? 
			 - • 
expCc/^ 

? 
+ c^) 

Since M is multiplicative, we can express it as M, = exp(y4,), where 

A, = I y[xl{yf + c/Oy) dB[ + / (yo + coao) dB° 
Jo Jo 

_ (yf + cfaf)2 /" 
^ ^ _ (yo + 

cocro)2^ 
2 Jo 2 

Also, it can be shown that M is always a martingale. Hence we may use this 
martingale to define a new probability measure. Using this new measure entails 
appending an extra drift to the law of motion of X . The resulting distorted or 
twisted drift for Xf is 

ijf(xf - xf) + xf(Tf(yf + Cyoy) 
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and the drift for X° is 

£o(xo - xo) + ao(yo + coao). 

Later we will argue that only one of these solutions interests us. We will 
select a solution for cf so that the implied distorted process for Xf remains 
stationary. Notice that 

ijf(Xf - xf) + Xf<rf(yf + C/oy) 

= €fXf ± xfj(€f 
- yf(Tf)2 - ajiiPf + yj). 

For mean reversion to exist, we require that the coefficient on xf be negative. 

Remark 6.2: At the cost of an increase in notational complexity, we could 
add an "affine" jump component as in Duffie, Pan, and Singleton (2000). 
Suppose that the state variable X°, instead of being an Ornstein-Uhlenbeck 
process, satisfies 

dX°t = U*o - Xf) dt + ao dB°t + dZt, 

where Z is a pure jump process whose jumps have a fixed probability distri- 
bution v on R and arrive with intensity vjxxf + tn2 with tb\ > 0, m2 > 0. Sup- 
pose that the additive functional A has an additional jump term modeled using 
K(y, x) = k(yo -xo)fory^x and / exp[/<(z)] dv{z) < oo. 

The generator A has now an extra term given by 

(vTiXf + m2) / [<Kxf9 xo + z) - (t>(Xf, xo)\ exp[ic(z)] dv{z). 

Hence when <f>{x) = exp(c/JC/ + 0oxo), the extra term reduces to 

(rnxXf + m2) exp(cfXf + coxo) / [exp(coz) - 1] exp[ic(z)] dv(z). 

As before we must have 

CO~ 
to 

and hence cf must solve 

y2 a2 
0 = pf + 

^+ cf{yf(Tf - if) + 
(cf)2^- 

+ wi/ Fexp^z) 
- ll exp[K(z)] dv(z). 
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The resulting eigenvalue is 

y2 a2 
p = fi + 

y 
+ CfgfXf + co(£oxo + yoao) + 

(co)2^ 

+ 
m2f\txp(^z\-l\txp[k(z)]dv(z). 

7. LONG-RUN DOMINANCE 

In this section we establish approximation results for semigroups that apply 
over long time horizons. The limiting result we justify is 

(18) lim exp(-pOM,<A = </> I %ds, /->oo J q) 

where the limit is expressed in terms of principal eigenvalue p and eigenfunc- 
tion </> for a collection of functions \p and a measure § that we will characterize. 
We have illustrated that there may be multiple principle eigenfunctions. We 
show that at most one of these principle eigenfunctions is the one germane for 
establishing this limiting behavior. In light of (18), the eigenvalue p governs the 
growth (or decay) of the semigroup. When we rescale the semigroup to elimi- 
nate this growth (decay), the limiting state dependence is proportional to the 
dominant eigenfunction </> (which is itself only determined up to a scale factor) 
for alternative functions if/. The precise characterization of this limiting behav- 
ior of the semigroup provides the fundamental inputs to our characterization 
of valuation over long time horizons. It provides us with a measure of long- 
term growth rates is asset payoffs and of long-term decay rates in the values 
assigned to these payoffs. It gives us ways to formalize long-term risk-return 
trade-offs for nonlinear Markov models as we will show in the next section. 

Prior to our more general investigation, we first illustrate the results in the 
case of a Markov chain. 

7.1. Markov Chain 

Consider the finite-state Markov chain example with intensity matrix U. In 
this section we will study the long-run behavior of the semigroup by solving the 
eigenvalue problem 

A<f> = p<f> 

for an eigenvector (f> with strictly positive entries and a real eigenvalue p. This 
solution exists whenever the chain is irreducible and the multiplicative func- 
tional is strictly positive. Given this solution, then 

Mt(f> = exp(fA)<£ = exp(pO<£. 
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The beauty of Perron-Frobenius theory is that p is the eigenvalue that dom- 
inates in the long run. Its real part is strictly larger than the real parts of all 
of the other eigenvalues. This property dictates its dominant role. To see this, 
suppose for simplicity that the matrix A has distinct eigenvalues, 

A = TDT"1, 

where T is a matrix with eigenvectors in each column and D is a diagonal matrix 
of eigenvalues. Then 

exp(rA) = Texp(rD)T"1. 

Let the first entry of D be p and let the first column of T be <f>. Scaling by 
exp(- pt) and taking limits, 

lim exp(-p/) exp(/A)i/f = (</>* • i/0</>, 
f->-00 

where <f>* is the first row of T~l. Thus p determines the long-run growth rate 
of the semigroup. After adjusting for this growth, the semigroup has an ap- 
proximate one factor structure in the long run. Provided that </>* \fj is not zero, 
exp(-pOM,«/f is asymptotically proportional to the dominant eigenvector <f>. 

7.2. General Analysis 

To establish this dominance more generally, we use the martingale construc- 
tion as in the decomposition of Corollary 6.1 to build an alternative family of 
distorted Markov transition operators and apply known results about Markov 
operators to this alternative family. 

In what follows we will maintain Assumption 6.1 and let A denote the ex- 
tended generator of the martingale M. We will also call the semigroup M as- 
sociated with M the principal eigenfunction semigroup. This semigroup is well 
defined at least on the space L°°, and it maps constant functions into constant 
functions. 

Consistent with the applications that interest us, we consider only multiplica- 
tive functional that are strictly positive. 

Assumption 7.1: The multiplicative functional M is strictly positive with prob- 
ability 1. 

As we mentioned earlier, the martingale M can be used to define a new mea- 
sure on sets / € Tt for any t. We are interested in the case where we may ini- 
tialize the process X such that, under the new probability measure, the process 
X is stationary. The next assumption guarantees that this is possible: 
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Assumption 7.2: There exists a probability measure s such that 

for all i/j in the L°° domain of the generator A. 

We write E and Pr for the expectation operator and the probability measure 
obtained when we use s as the distribution of the initial state Xo and the mar- 
tingale M to distort the transition probabilities, that is, for each event / € J7,, 

Pr(/) = 
j E[M,lf\X0 = x] d$(x). 

For each x, the probability Pr(-|-Yo = x) is absolutely continuous with respect 
to probability measure implied by Pr conditioned otiXq = x when restricted to 
Tt for each t > 0. Assumption 7.2 guarantees that 9 is a stationary distribution 
for the distorted Markov process. (For example, see Proposition 9.2 of Ethier 
and Kurtz (1986).) Furthermore, 

(19) E[MM*i)\Xo = x] = 
exp(P0<M*)£[|jyy |*o 

= x\. 

If we treat exp(-pO</>(^) as a numeraire, equation (19) is reminiscent of 
the familiar risk-neutral pricing in finance. Note, however, that the numeraire 
depends on the eigenvalue-eigenfunction pair, and equation (19) applies even 
when the multiplicative process does not define a price.13 

Let A > 0 and consider the discrete time Markov process obtained by sam- 

pling the process at Aj for 7 = 0, 1, .... This discrete process is often referred 
to as a skeleton. In what follows we assume that the resulting discrete time 
process is irreducible. 

Assumption 7.3: There exists a A > 0 such that the discretely sampled process 
{Xy'.j = 0, 1, . . .} is irreducible. That is, for any Borel set A of the state space VQ 
with ?(A) > 0, 

1 
E J2hxAjeA)X0 J 

= x\>0 
. y=o 

J 
J 

forallxeV0. 

13The idea of using an appropriately chosen eigenfunction of an operator to construct and 

analyze a twisted probability measure is also featured in the work of Kontoyiannis and Meyn 
(2003). 
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Under Assumption 7.1 it is equivalent to assume that this irreducibility re- 
striction holds under the original probability measure.14 

We establish approximation results by imposing a form of stochastic stability 
under the distorted probability measure. We assume that the distorted Markov 
process satisfies the next assumption: 

Assumption 7.4: The process X is Harris recurrent under the measure Pr. 
That is, for any Borel set A of the state space Vo with positive £ measure, 

?r\j l{Xt£A] = oo\x0 = x\ = l 

forallxeV0. 

Among other things, this assumption guarantees that the stationary distrib- 
ution 9 is unique. 

Under these assumptions, we characterize the role of the principal eigen- 
value and function on the long-run behavior of the semigroup. The proof is 
given in Appendix B. 

Proposition 7.1: Suppose that M satisfies Assumptions 6.1 and 1.1-1 A, and 
let A > 0. 

(a) For any ipforwhich /(|i/f|/<£)ds < oo, 

- ds 

for almost all (s) x. 
(b) For any i// for which \jj/<j> is bounded, 

- ds 
(p 

for x € Vo. 

The approximation implied by Proposition 7.1, among other things, gives a 
formal sense in which p is a long-run growth rate. It also provides more pre- 
cise information, namely that after eliminating the deterministic growth, ap- 
plication of the semigroup to ifj is approximately proportional to <f>, where the 
scale coefficient is / ^ ds. Subsequently, we will consider other versions of this 

approximation. We will also impose additional regularity conditions that will 
guarantee convergence without having to sample the Markov process. 

14 
Irreducibility and Harris recurrence are defined relative to a measure. This claim uses the 

9 measure when verifying irreducibility for the original probability measure. Since irreducibility 
depends only on the probability distribution conditioned on Ao, it does not require that the X 

process be stationary under the original measure. 



LONG-TERM RISK 209 

7.2.1. Uniqueness 
As we mentioned earlier, there may exist more than one principal eigenfunc- 

tion of the extended generator even after a scale normalization is imposed. To 
be of interest to us, a principal eigenfunction must generate a twisted proba- 
bility measure, that is, M must be a martingale. As we showed in Example 6.2, 
this requirement is not enough to guarantee uniqueness - there may exist more 
than one principal eigenfunction for which the implied Mt is a martingale. 
However, in that example, only one of the two solutions we exhibited implies 
a Markov evolution for X that is stochastically stable. The other solution will 
also result in a Markov process, but it fails to be stationary. Recall that the two 
candidate drift distortions are 

ifXf ± xfJ(£f-yf*f)2-(T2f(2pf + y2f). 

Only when we select the solution associated with the negative root do we obtain 
a process that has a stationary density. 

This approach to uniqueness works much more generally. The next proposi- 
tion establishes that stochastic stability requirements will typically eliminate 
the multiplicity of principal eigenvectors that generate appropriate twisted 
probabilities. More generally, it states that the eigenvalue of interest to us is 
always the smallest one. 

Proposition 7.2: Assume that Assumption 7.1 is satisfied and that there exists 
a sampling interval A such that {XAj\j = 0, 1, . . .} is irreducible. Suppose </> is a 
principal eigenfunction of the extended generator A of a multiplicative process M 

for which the associated process {Mt : t > 0} satisfies Assumptions 6.1, 7.2 with 
a stationary distribution s, 7.3, and 1 .4. Then the associated eigenvalue p is the 
smallest eigenvalue associated with a principal eigenfunction. Furthermore, if </> 
is another positive eigenfunction associated with p, then <£ is proportional to </> 
(s almost surely). 

The proof can be found in Appendix B. 
This proposition guarantees that once we find a positive eigenfunction that 

generates a martingale that satisfies the required stochastic stability restriction, 
then we have found the only eigenfunction of interest (up to a constant scale 
factor). For instance, in Example 6.2 we only examined candidate eigenf unc- 
tions of a particular functional form, but found one that satisfies the assump- 
tions of Proposition 7.2. Hence there exist no other eigenfunctions that satisfy 
these assumptions. 

7.2.2. Lp Approximation 
When there exists a stationary distribution, it follows from Nelson (1958) 

that the semigroup {M, : t > 0} can be extended to Lp for any p > 1 constructed 
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using the measure ds. The semigroup is a weak contraction. That is, for any 
t>0, 

WMMpSWHp, 

where || • \\p is the Lp norm. 

Proposition 7.3: Under Assumption 1.2, for p>\, 

[f |M""K^) *p * «*">[/ wi^) d*T 
provided that f \^\p{\/<f)p) ds < oo. 

Proof: This follows from the weak contraction property established by 
Nelson (1958) together with the observation that 

«p(-po(£)M,*=ft,(!). QED 
Remark 7.1: This proposition establishes an approximation in an Lp space 

constructed using the transformed measure {\/<f>p)d$. Notice that 0 itself is 
always in this space. In particular, we may view the semigroup {M, : t > 0} as 
operating on this space. 

Proposition 7.3 shows that when the distorted Markov process constructed 
using the eigenfunction is stationary, p can be interpreted as an asymptotic 
growth rate of the multiplicative semigroup. The eigenfunction is used to char- 
acterize the space of functions over which the bound applies. We now produce 
a more refined approximation. 

Let Zp denote the set of Borel measurable functions if/ such that / ijf ds = 0 
and / |i/> \p dg < oo. Make the following supposition: 

Assumption 7.5: For any t > 0, 

sup ||M,</f||p<l. 
•AeZP:||<H<l 

In the case of p = 2, Hansen and Scheinkman (1995) gave sufficient condi- 
tions for Assumption 7.5 to be satisfied.15 

15 
Assumption 7.5 for p = 2 is equivalent to requiring that the distorted Markov process be 

rho-mixing. 
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Proposition 7.4: Under Assumptions 12 and 7.5, for any \ft such that 

f\l\pds<oo, 

[ r r d, p l l1/p 
I exp(-pOM,(/f - </> / -ds -r-pd$\ <cexp(-rjO 

for some rate rj > 0 and positive constant c. 

7.2.3. Lyapunov Functions 

Meyn and Tweedie (1993a) established, under an additional mild continu- 
ity condition, sufficient conditions for the assumptions in this section using a 
"Lyapunov function" method. In this subsection we will make the following 
assumption: 

ASSUMPTION 7.6: The process X is a Feller process under the probability mea- 
sure associated with M.16 

We use Lyapunov functions that are restricted to be norm-like. 

Definition 7.1: A continuous function V is called norm-like if the set 
{x : V(x) < r] is precompact for each r > 0. 

A norm-like function converges to +oo along any sequence [Xj] that con- 

verges to oo. We will consider here only norm-like functions V for which kV 
is continuous. 

A sufficient condition for the existence of a stationary distribution (Assump- 
tion 7.2) and for Harris recurrence (Assumption 7.4) is that there exists a 
norm-like function V for which 

outside a compact subset of the state space. (See Theorem 4.2 of Meyn and 
Tweedie (1993b).) 

In Section 7.2.2 we established Lp approximations results. The space Lp is 
largest for p = 1. It is of interest to ensure that the constant functions are in 
the corresponding domain for the semigroup {M, : t > 0}. This requires that 

16By a Feller process we presume that the implied conditional expectation operators map con- 
tinuous functions on the one-point compactification of V into continuous functions. In fact, Meyn 
and Tweedie (1993b) permitted more general processes. The restriction that the process be Feller 

implies that all compact subsets are what Meyn and Tweedie (1993b) referred to as petite sets. 
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l/<f) have a finite first moment under the stationary distribution s. A sufficient 
condition for this is the existence of a norm-like function V such that 

A((f)V) - p(f)V = <£A(K) < - max{l, <j>] 

for x outside a compact set. (Again see Theorem 4.2 of Meyn and Tweedie 
(1993b).) 

Finally, Proposition 7.4 only applies when the process is weakly dependent 
under the stationary distribution.17 By weakening the sense of approximation, 
we can expand the range of applicability. Consider some function ij/ > 1. For 
any t, we use 

sup M,i/f - I i/tds 
I«AI<«A ' 

for each x as a measure of approximation. When ijf = 1 this is equivalent to 
what is called the total variation norm by viewing M,i/f and / i/fds applied to 
indicator functions as measures for each x. It follows from Meyn and Tweedie 
(1993b, Theorem 5.3) that if there exists a norm-like function V and a real 
number a such that 

(20) ^-l-pV = AV<-4,, 

A(d>df) ~ /v 
V -p«ft = A^<a<fr 

outside a compact set, then 

^ ib f ib C {b 
</>lim sup M, 
			 I -ds = lim sup exp(-pOM,i/> - </> I -ds 

^°°\+\<+* * J $ ^°°\+\<<t>* J * 

= 0. 

Note that in inequality (20) the constant a can be positive. Hence this inequal- 
ity only requires the existence of an upper bound on rate of growth of the con- 
ditional expectation of the function $ under the distorted probability. While 
the approximation is uniform in functions dominated by $$, it is pointwise in 
the Markov state x. 

The approximation results obtained in this section have a variety of applica- 
tions depending on our choice of the multiplicative functional M. In these ap- 
plications M is constructed using stochastic discount factor functionals, growth 
functional, or valuation functionals. These applications are described in the 
next section. 

17 In contrast, Proposition 7.1 applies more generally. 
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8. LONG-TERM RISK 

A familiar result from asset pricing is the characterization of the short-term 
risk-return trade-off. The trade-off reflects the compensation, expressed in 
terms of expected returns, from being exposed to risk over short time horizons. 
Continuous-time models of financial markets are revealing because they give a 
sharp characterization of this trade-off by looking at the instantaneous limits. 
Our construction of valuation functionals in Section 3.4 reflects this trade-off 
in a continuous-time Markov environment. Formally, the trade-off is given in 
Corollary 3.1. In this section we explore another extreme: the trade-off perti- 
nent for the long run. 

In the study of dynamical systems, a long-run analysis gives an alternative 
characterization that reveals features different from the short-run dynamics. 
For linear systems it is easy to move from the short run to the long run. Non- 
linearity makes this transformation much less transparent. This is precisely why 
operator methods are of value. Specifically, we study growth or decay rates in 
semigroups constructed from alternative multiplicative functionals. Asset val- 
ues are commonly characterized in terms of growth rates in the cash flows 
and risk-adjusted interest rates. By using results from the previous section, we 
have a way to provide long-term counterparts to growth rates and risk-adjusted 
interest rates. By changing the long-term cash-flow exposure to risk, we also 
have a way to study how long-term counterparts to risk-adjusted interest rates 
change with cash-flow risk exposure. In this section we show how to apply the 
methods of Section 7 to support characterizations of long-term growth and 
valuation. 

It has long been recognized that steady state analysis provides a useful char- 
acterization of a dynamical system. For Markov processes the counterpart to 
steady state analysis is the analysis of a stationary distribution. We are led to 
a related but distinct analysis for two reasons. First, we consider economic en- 
vironments with stochastic growth. Second, our interest is in the behavior of 
valuation, including valuation of cash flows with long-run risk exposure. These 
differences lead us to study stochastic steady distributions under alternative 
probability measures. 

As we have seen, these considerations lead naturally to the study of multi- 
plicative semigroups that display either growth in expectation or decay in value. 
The counterpart to steady state analysis is the analysis of the principal eigen- 
values and eigenfunctions, the objects that characterize the long-run behav- 
ior of multiplicative semigroups. We use appropriately chosen eigenvalues and 
eigenfunctions to change probability measures. Changing probability measures 
associated with positive martingales are used extensively in asset pricing. Our 
use of this tool is distinct from the previous literature because of its role in 
long-run approximation. 

We now explore three alternative applications of the methods developed in 
this paper. 
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8.1. Decomposition of Stochastic Discount Factors (M = S) 

Alvarez and Jermann (2005) characterized the long-run behavior of stochas- 
tic discount factors. Their characterization is based on a multiplicative decom- 
position on a permanent and a transitory component (see their Proposition 1). 
Corollary 6.1 delivers this decomposition, which we write as 

(21) S, = exp(p0M,^^ 

for some martingale M. The eigenvalue p is typically negative. We illustrated 
that such a decomposition is not unique. For such a decomposition to be useful 
in long-run approximation, the probability measure implied by martingale M 
must imply that the process X remains stationary. Proposition 7.2 shows that 
only one such representation implies that the process X remains recurrent and 
stationary under the change of measure. 

Decomposition (21) of a stochastic discount factor functional shows how to 
extract a deterministic growth component and a martingale component from 
the stochastic discount factor functional. Long-run behavior is dominated by 
these two components vis a vis a transient component. Building in part on rep- 
resentations in Bansal and Lehmann (1997), Hansen (2008) showed that the 
transient component can often include contributions from habit persistence or 
social externalities as modeled in the asset pricing literature. This stochastic 
discount factor decomposition can be used to approximate prices of long-term 
discount bonds, 

exp(-pt)E(St\X0 = x) = E(- \- X0 = x)<l>(x) 

-feW- 
where the approximation on the right-hand side becomes arbitrarily accurate 
as the horizon t becomes large. Prices of very long-term bonds depend on the 
current state only through <t>(x). Thus <f> is the dominant pricing factor in the 
long run. This approximation result extends more generally to stationary cash 
flows as characterized by Proposition 7. 1.18 

8.2. Changing Valuation Functional (M = V) 
Alternative valuation functional imply alternative risk exposures and 

growth trajectories. For one version of a long-term risk-return frontier, we 

18 Alvarez and Jermann (2005) referred to an earlier version of our paper for the link to eigen- 
functions. 
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change the risk exposure of the valuation functional subject to pricing restric- 
tion (10). This gives a family of valuation functional that are compatible with 
a single stochastic discount factor. We may then apply the decomposition in 
Corollary 6.1, restricted so that the distorted Markov process is stationary, to 
find a corresponding growth rate associated with each of these valuation func- 
tionals. Thus alternative valuation functional as parameterized by the triple 
(Pv, 7v, kv) and restricted by the pricing restriction of Proposition 3.1 imply re- 
turn processes with different long-run growth rates. The principal eigenvalues 
of the corresponding semigroups give these rates. In effect, the valuation func- 
tionals can be freely parameterized by their risk exposure pair (yv, kv) with fiv 
determined by the local pricing restriction. The vector yv gives the exposure to 
Brownian risk and kv gives the exposure to jump risk. 

Thus a long-run risk-return frontier is given by the mapping from the risk 
exposure pair (jv,kv) to the long-run growth rate of the valuation process. 
The growth rate may be computed by solving an eigenvalue problem that ex- 
ploits the underlying Markovian dynamics. This characterizations allows us to 
move beyond the log-linear-log-normal specification implicit in many studies 
of long-horizon returns. The dominant eigenvalue calculation allows for condi- 
tional heteroskedasticity with long-run consequences and it allows jumps that 
might occur infrequently. The principal eigenfunction (along with the eigen- 
value) can be used to construct the martingale component as in Corollary 6.1. 

Example 8.1 - Application to the Markov Diffusion Example: Recall that 
in the Breeden model and the Kreps-Porteus model, the implied stochastic 
discount factor is St = exp(^), where 

(22) A\ = pst + f FfX{ ds + f fiXf ds + f Jxjy} dB{ + f yso dB% 
Jo Jo Jo Jo 

where the alternative models give rise to alternative interpretations of the pa- 
rameters. To parameterize a valuation functional V = exp(^4u), we construct 

Avt=fivt+ I P}X{ds Jo 

+ fpvoXfds+ l'y[x{y}dB{+ ['yldB°, Jo Jo Jo 

where 

P' + fivfxf + fivox0 

= -p - FfXf - Foxo - ^(ff + y})2 - i(/0 + yvo)2. 
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This equation imposes the local risk-return relation and determines /3U, j8]J, 
and pvo as a function of the stochastic discount factor parameters and the risk 
exposure parameters yvf and yvo. 

To infer the growth rates of valuation processes parameterized by (yvf, yv0), 
we find the principal eigenvalue for the multiplicative semigroup formed by 
setting M = V. Applying the calculation in Example 6.2, this eigenvalue is 
given by 

p = pv + (yj£ + cvSfif + cl{L-Xo + y>o) + K)2^ 
(ys)2 a2 

= 
_F_^L_ ysoJl + Qv{fif + c:(^-o + y>o) + 

(<)2^f 

where cvf and cvo are given by formulas (16) and (17), respectively. The terms 
on the right-hand side exclusive of cvf^fxf give the continuous-time log-normal 
adjustments, while cvf^fxf adjusts for the stochastic volatility in the cumulative 
return. A long-run risk-return trade-off is given by mapping of (yvf, yvo) into the 
eigenvalue p. 

Note that pv is a linear function of yv0. One notion of a long-run risk price 
is obtained by imputing the marginal change in the rate of return given a mar- 
ginal change in the risk exposure as measured by p: 

(23) £ 
°Jo 

= -£ + <i<'o = -y'o-fr.y. So °Jo So 

In contrast, p depends nonlinearly on yj, although risk prices can still be con- 
structed by computing marginal changes in the implied rates of return at alter- 
native values of yvf. 

8.3. Changing Cash Flows (M = G, M = S, and M = GS) 

Consider next a risky cash flow of the form 

where G is a multiplicative functional. This cash flow grows over time. We 
could parameterize the multiplicative functional as the triple (j8g, yg, k8), but 
this over-parameterizes the long-term risk exposure. The transient compo- 
nents to cash flows will not alter the long-run risk calculation. One attractive 
possibility is to apply Corollary 6.1 and Propositions 7.1 and 7.2 with (M = G), 
and use the martingale from that decomposition for our choice of G. Thus we 
could impose the following restriction on the parametrization of G: 
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for some positive growth rate 8. Given 8, this relation determines a unique 
Pg. In addition, we restrict these parameters so that the distorted probability 
measure associated with an extended generator built from (a) jump measure 
exp[Kg(j, x)]r](dy\x), (b) first derivative term £(jc) + r(x)yg(x), and (c) sec- 
ond derivative term X(x) implies a semigroup of conditional expectation oper- 
ator that converges to the corresponding unconditional expectation operator. 

Hansen, Heaton, and Li (2008) explored the valuation consequences by con- 
structing a semigroup using M = GS, where 5 is a stochastic discount factor 
functional. They only considered the log-linear-log-normal model, however. 
Provided that we can apply Proposition 7.1 for this choice of M and </>, the 
negative of the eigenvalue -p is the overall rate of decay in value of the cash 
flow. 

Consider an equity with cash flow D. For appropriate specifications of ij/, the 
values of the cash flows far into the future are approximately proportional to 
the eigenf unction </>. Thus we may view ^ as the limiting contribution to the 

price dividend ratio. The decay rate p reflects both a growth rate effect and a 
discount rate effect. To net out the growth rate effect, we compute - p + 8 as 
an asymptotic rate of return that encodes a risk adjustment. Heuristically, this 
is linked to the Gordon growth model because -p is the difference between 
the asymptotic rate of return -p + 8 and the growth rate 5. 

Following Hansen, Heaton, and Li (2008), we explore the consequences of 
altering the cash-flow risk exposure. Such alterations induce changes in the 
asymptotic decay rate in value (-p), and hence in the long-run dividend price 
ratio ̂ - and the asymptotic rate of return -p + 8. The long-run cash-flow risk- 
return relation is captured by the mapping from the cash-flow risk exposure 
pair (yg, k8) to the corresponding required rate of return -p + 5. 

Hansen, Heaton, and Li (2008) used this apparatus to produce such a trade- 
off using empirical inputs in a discrete-time log-linear environment. The for- 
mulation developed here allows for extensions to include nonlinearity in con- 
ditional means, heteroskedasticity that contributes to long-run risk, and large 
shocks modeled as jump risk. 

Example 8.2 - Application to the Markov Diffusion Example: Returning to 
the Breeden model or the Kreps-Porteus model, suppose the growth process 
G is the exponential of the additive functional: 

Jo Jo Jo z 

The parameters y8f and y°f parameterize the cash-flow risk exposure. We limit 
the cash-flow risk exposure by the inequality 

2(Zf + afy8f)xf>a2r 
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This limits the martingale component so that it induces stationarity under the 

probability measure induced by the M associated with M = G. 
We use again the parameterization St = exp(^4J), where A\ is given by (22). 

Hence A = As + A8 is given by 

At = pt + fpfX{ds+ f fSoX°sds+ fJxiyfdB{+ f yodB% 
Jo Jo Jo Jo 

where jB = 8 - (y*)2/2 + j8', pf = -(y8f)2/2 + p'f9 po = ft, y/ = yf + y}, and 
yo = y8 + yso. The formulas given in Example 6.2, discussed previously, give us 
an asymptotic, risk-adjusted rate of return 

-p + 8 = 
-(-?]f-ysoyS-ps-cftfxf 

- co[£oxo + (yf + yso)ao] - (co)2^. 

Recall that co = Pso/€o and cf is a solution to a quadratic equation (16). This 
allows us to map exposures to the risks B° and Bf into asymptotic rates of 
return. For instance, the long-run risk price for the exposure to the B° risk is 

This risk price vector coincides with the one imputed from valuation function- 
als (see (23)). The long-run contribution is reflected in the parameter go that 
governs the persistence of the Ornstein-Uhlenbeck process. This limit gives a 
continuous-time counterpart to the discrete-time log-normal model studied by 
Hansen, Heaton, and Li (2008). 

The cash-flow risk exposure to Bf is encoded in the coefficient cf of the 
eigenfunction. Since this coefficient depends on y8f in a nonlinear manner, 
there is nonlinearity in the long-run risk price; the marginal prices depend on 
the magnitude of the exposure. The prices of the cash-flow exposure to Bf risk 
differ from their counterparts from valuation functions. The cash-flow prices 
feature exposure at a specific horizon, while the valuation prices value the cu- 
mulative exposure over the horizon when payoffs are reinvested. In general, 
these prices will differ even though they happen to agree for log-normal speci- 
fications. 

Hansen (2008) gave some other continuous-time examples, drawing on al- 
ternative contributions from the asset pricing literature. 

Hansen, Heaton, and Li (2008) also decomposed the one-period return risk 
to equity into a portfolio of one-period holding period returns to cash flows for 
log-linear models. To extend their analysis, consider a cash flow of the form 

Dt = D0GMXt), 
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where G is a multiplicative growth functional. The limiting gross return is given 
by 

f-*oo £(£,£>, |.F0) <M^o) 

where p and <£ are the principal eigenvalue and eigenfunction of the semi- 

group constructed using M = GS. This limit presumes that E\fj{Xt) is pos- 
itive. The limiting holding period return has a cash-flow growth component 
Gi, an eigenvalue component exp(- p), and an eigenfunction component 
(<f>(Xx ))/(</> (Xo)). The limit is independent of the transient contribution to 
the cash flow provided that the assumptions of Proposition 7.1 are satisfied. 

9. EXISTENCE 

In our analysis thus far we supposed that we could find solutions to the prin- 
cipal eigenvalue problem and then proceeded to check the alternative solu- 
tions. We also exhibited solutions to this problem for specific examples. We 
now discuss some sufficient conditions for the existence of a solution to the 
eigenvalue problem. We return to our study of a generic semigroup repre- 
sented with a multiplicative functional M. As we know from Table I, there is 
a variety of constructions of a multiplicative functional depending on which of 
the applications described in Section 8 is the focal point of the investigation. 

Our analysis in this section builds on work of Nummelin (1984) and 
Kontoyiannis and Meyn (2005). We impose the following drift condition: 

Assumption 9.1: There exists a function V > 1 and constant a such that for 
xeV0, 

AV(x) 
~V\x)-- 

Since M is a multiplicative functional, so is {(MtV(Xt))/(V(X0))}. We show 
in Appendix D that when Assumption 9.1 holds, the operator 

F<K*)= f" exp(-at)E\Mt^^il,(Xt) v X0 = x] Jo L v v^oJ J 

is bounded on L°° whenever a > a. As an alternative, we could have con- 
structed an analogous operator applied to Vij/, in which case we should also 
scale the outcome: V¥ijj. In what follows it will be convenient to work directly 
with the operator F.19 

We impose the following positivity condition on F: 

19The operator F is a resolvent operator associated with the semigroup built with the multi- 

plicative functional {(MtV(Xt))/(V(X0))}. 
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Assumption 9.2: There exists a measure v on the state space T>o such that for 
every Borel set A for which v{A) > 0, 

F1a(jc)>0. 

This irreducibility assumption on F can be obtained from more primitive 
hypotheses as verified in Appendix D. 

If Assumption 9.2 holds, it follows from Theorem 2.1 of Nummelin (1984) 
that there exists a function s > 0 with / s dv > 0 such that for any ij/ > 0, 

(24) F*l/>s f if/dv. 

The function s is necessarily bounded and hence we may scale it to have an L°° 
norm equal to unity by adjusting the measure v accordingly. 

Next form 

for alternative values of the real number r. Theorem 3.2 of Nummelin (1984) 
states that is a critical value A > ||F|| for which the quantity in (25) is finite for 
r > A and infinite for r < A, and that such a A is independent of the particular 
function s chosen. When (rl - F)"1 does not exist as a bounded operator, r is in 
the spectrum of F. The spectrum is closed and thus A is necessarily an element 
of the spectrum. 

Our goal is to state sufficient conditions under which A is an eigenvalue of 
F associated with a nonnegative eigenf unction </>. This result is of interest be- 
cause, as we show in Appendix D, when <f> is a nonnegative eigenfunction of 
F, then V<f> is a positive eigenfunction of the semigroup {M, : t > 0}. Proposi- 
tion 6.2 thus guarantees that we can produce the desired decomposition of the 
multiplicative functional M. 

Construct the nonnegative operator 
00 

y=o 

where s ® v is the operator 

(s<g>v)il/ = s I \\fdv. 

Following Nummelin (1984), our candidate eigenfunction is the nonnegative 
function Gs. Provided that G is a bounded operator, Gs is an eigenfunction 
of F. (See Appendix D.) 



LONG-TERM RISK 221 

This leaves open how to verify that G is a bounded operator.20 Instead of as- 
suming that G is bounded, we may suppose that the following statement holds: 

Assumption 9.3: <f> = Gs is bounded}1 

In addition, we strengthen Assumption 9.1. 

Assumption 9.4: There exists a function V > 1 such that for any r > 0, there 
exists a positive number c such that 

AV - <-r + C5 

forallx£V0. 

In Appendix D we show that these two assumptions guarantee that the op- 
erator G is bounded using an argument that follows in part the proof of Propo- 
sition 4.11 in Kontoyiannis and Meyn (2003). 

Remark 9.1: We may apply the multiplicative mean ergodic theorem (The- 
orem 4.16) of Kontoyiannis and Meyn (2003) if we decompose the generator 

(26) if.mt + tf. 
where B<£ = (^ - 0^). Notice that Bl = 0. Typically, B will be the generator 
of a semigroup for a Markov process. Kontoyiannis and Meyn (2003) imposed 
restrictions on this process and bounds on their counterpart to ^f to establish 
the existence of a positive eigenfunction.22 

Remark 9.2: Alternatively, we may establish the existence of an eigenfunc- 
tion by showing that F is a compact operator on an appropriately weighted L2 
space by using the approach of Chen, Hansen, and Scheinkman (2007). Chen, 
Hansen, and Scheinkman (2007) focused on the case of a multivariate diffu- 
sion, implying that B is a second-order differential operator. 

20It follows from Nummelin (1984, Proposition 4.7) that Gs is finite except on the set of v 
measure zero, and follows from Propositions 4.7 and 2.1 of Nummelin (1984) (applied to the 
kernel A"1 (F - s <g> v)) that ¥<j> < A<£. 

21 
Alternatively, we could assume that there exists a function 0 < s* < 1 such that Fs* < As* and 

fs*dv> 0. It may then be shown that </> < \/(fs* dv) as in, say, Proposition 4.11 of Kontoyiannis 
and Meyn (2003). 

22The Kontoyiannis and Meyn (2003) established more refined results motivated by their in- 
terest in large deviation theory. 
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10. CONCLUSIONS 

In this paper we characterized the long-run risk-return relationship for 
nonlinear continuous-time Markov environments. This long-term relationship 
shows how alternative cash-flow risk exposures are encoded in asymptotic risk- 
adjusted discount rates. To achieve this characterization we decomposed a 
multiplicative functional built from the Markov process into the product of 
three components: (i) a deterministic exponential trend, (ii) a martingale, and 
(iii) a transitory component. The martingale and transitory components are 
constructed from a principal eigenfunction associated with the multiplicative 
functional, and the rate of growth of the exponential trend is given by the cor- 
responding eigenvalue. The multiplicative functional represents a semigroup 
of valuation operators that accommodate stochastic growth in consumption or 
cash flows. Thus the decomposition of the multiplicative functional allows us to 
characterize transitory and permanent components to valuation. Specifically, 
the martingale component gives an alternative distorted or twisted probability 
that we used to characterize approximation over long time horizons. 

This long-horizon apparatus is a complement to the short-term risk-return 
trade-offs familiar from asset pricing and is tailored to accommodate stochastic 
growth. It supports an analysis of the term structure of risk prices. We explore 
this term structure for two reasons. First, a variety of recent theories of asset 
prices feature investor preferences in which the intertemporal decomposition 
of risk is an essential ingredient, as in models in which separability over states 
of nature or time is relaxed. A second motivation is that the arguably simpli- 
fied models that we use to construct evidence are likely to be misspecified when 
pricing over short intervals of time. Pricing models can be repaired by append- 
ing ad hoc dynamics, but then it becomes valuable to understand which repairs 
have long-run consequences. 

There are several natural extensions of this work. First, while we presented 
results concerning the existence and uniqueness of principal eigenvalues and 
eigenfunctions, it remains important to develop methods for computing these 
objects. There is only a limited array of examples for which quasi-analytical so- 
lutions are currently available. Second, while we have focused on dominant 
eigenvalues, more refined characterizations are needed to understand how 
well long-run approximation works and how it can be improved. Results in 
Chen, Hansen, and Scheinkman (2007) and Kontoyiannis and Meyn (2003) 
could be extended and applied to achieve more refined characterizations.23 
Third, we considered only processes with a finite number of jumps in any finite 
interval of time. Extending the results presented in this paper to more gen- 
eral Levy processes may add new insights into characterizing long-term risk. 

^Lewis (1998), Linetsky (2004), and Boyarchenko and Levendorskii (2007) used spectral 
methods of this type to study the term structure of interest rates and option pricing by apply- 
ing and extending quasi-analytical characterizations of eigenfunctions. 
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Shaliastovich and Tauchen (2005) motivated such extensions when building 
structural models of asset pricing. 

APPENDIX A: VALUE FUNCTION IN THE EXAMPLE ECONOMY 

Recall the equation 

(l-a)of 0 (l-a)#2, 
-f/w/ + 
			 ^ 

- (w^ 
0 
+ (1 ~ a)#/°/w/ + 
			 j 

- = bW/ 

that we solved when constructing the value function for the Kreps and Porteus 
(1978) example with a > 1. This quadratic equation has two solutions: 

w/ = ((a-l)oy#/ + b + £/ 

± ^/[(a 
- l)af#f + b + ^]2 - (a - l)2ajd2f)/((l - a)of). 

Solutions will exist provided 

\£f + b + (a-l)<rf»f\>(a-l)\<rf&f\9 

which will always be satisfied when #/oy > 0. Solutions will also exist when 
dfO-f < 0 and 

f/ + b>2(a-l)|d/oy|. 

In both cases 

£/ + b + (a-l)oy#/>0, 

and thus both zeros are negative. 
As claimed in the text, the solution that interests us is 

w/ = ((a-l)oy#/ + b + £/ 

- 
J[(a 

- Doyd/ + b + ^]2 - (a - 1)2^)/((1 - a)oj). 

To see why, we note that a finite time horizon solution is given by a value func- 
tion with the same functional form but coefficients that depend on the gap of 
time between the terminal period and the current period. This leads us to study 
the slope of the quadratic function 

(l-a)c72 , (l-a)#2, 
-?/W/ + 
			 j 

- ^rf 
, + (1 " a)#/°"/w/ + 
			 j 

- ~ bW/ 

at the two zeros of this function. This function is concave. We pick the zero 
associated with a negative slope, which will always be the rightmost zero since 
this is the only "stable" solution. 
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APPENDIX B: Approximation 

In this appendix we present additional proofs for some of the propositions 
in Section 7. 

Proof of roposition 7.1: Note that 

exp(-pOM,i/f(jt) = 
m/|^(jc). 

It follows from Theorem 6.1 of Meyn and Tweedie (1993a) that 

lim sup m/tV f T^ =°> 
'-*°°o<*<* \<P/ J <P 

which proves (b). Consider any sample interval A > 0. Then 

lim sup MAj(t\- f^ds = 0. 
>->°°o<*<* \<P/ J <P 

From Proposition 6.3 of Nummelin (1984), the sampled process {XAj\j = 
0, 1, . . .} is aperiodic and Harris recurrent with stationary density £. Hence if 

f\$(x)\d§(x)<oo, 

£*•($)-/!* 
for almost all (?) x, which proves (a). (See for example, Theorem 5.2 of Meyn 
and Tweedie (1992).) Q.E.D. 

Proof of Proposition 7.2: Consider another principal eigenfunction 
(f>* with associated eigenvalue p*. By Proposition 6.2, the eigenfunction- 
eigenvalue pairs must solve 

Mt<t>(x) = exp(pt)<f>(x), 

M,</>*(x)<exp(p*0<£*(*). 

If M is the martingale associated with the eigenvector <£, then 
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Since the discrete-time sampled Markov process associated with M is Harris 
recurrent, aperiodic, and has a unique stationary distribution, the left-hand 
side converges to 

for t = Aj as the integer j tends to oo, whenever this expected value is finite. 
If this expected value is not finite, then since ^ > 0, the left-hand side must 
diverge to +00. In any case, this requires that p < p*. If p* = p, then 

l<i>(X0)\- <£(*)' 
Hence the ratio of the two eigenfunctions is constant (9 almost surely). Q.E.D. 

Proof of Proposition 7.4: Notice that 

exp(-P0M,<A-4> j |</s 
= 

<t>Mt(J^\- f^ds. 
Moreover, 

Assumption 7.5 implies that the right-hand side converges to zero as t gets 
large. By the semigroup property, this convergence is necessarily exponentially 
fast. Q.E.D. 

APPENDIX C: MARTINGALES AND ABSOLUTE CONTINUITY 

In this appendix we state some conditions that insure that Assumption 6.1 
holds. Our result is inspired by the approach developed in Chapter 7 of Liptser 
and Shiryaev (2000). Let M denote a multiplicative functional parameterized 
by (/3, y, k) that is restricted to be a local martingale. Thus M = exp(v4), where 

At= f p(Xu)du 
Jo 

+ f y(xu_y[r{xu_)T{xu_)rlr(xu-)'[dxcu - &xu-)du] 
Jo 

+ ^ k(Xu,Xu.), 
0<u<t 

and the following assumption holds. 
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Assumption C.I: 

\y\2 C 

-P--Y-] 
C 
(exP[*(* *)] - i)v(dy\x) = o. 

The extended generator for M is given by 

A*(x) = [«*) + r(x)f(x)] . *!g± + \ trace(^)^) 

+ 
f[4>(y) 

- <t>(x)] exp[k(y, x)]v(dy\x). 

Assumption C.2: There exists a probability space (O9 f, Pr), a filtration Ft, 
an n-dimensional Tt Brownian motion B, and a semimartingale X = Xc + Xj, 
where 

(27) dXct = [((Xt-) + r(Xt_)y(X<-)]dt + r{Xt.)dBt 

and Xj is a pure jump process with a finite number of jumps in any finite interval 
that has a compensator exp[/c(j, Xt_)]r](dy\ Xt_) dt. 

In this case, 

dBt = [r(Xu_)T{Xu_)Yl 

x r(Xu_Y[dXcu - £{Xu_)du - r(Xu_)y(Xu.)du\. 

Use the process X to construct a multiplicative functional M = exp(y4), 
where 

At = - f P(Xu)du 
Jo 

- 
f y{Xu.)\r{Xu.)T{Xu.)Yxr{Xu_)'[dXcu - &Xu-)du] 

Jo 

0<u<t 

= - /'[/§(*„) + \y(Xu.)\2] du - I y(Xu-)'[r(Xu_mXu-)]-1 
Jo Jo 

x r(XuJ)'[dXcu - t(Xu.)du - r(Xu_)y(Xu.)du] 

0<u<t 
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The multiplicative functional M is parameterized by 

j8 = -/3-|y|2, 

k = -k. 

Assumption C.3: The parameterization (/3, y, k) of the multiplicative func- 
tional M satisfies the following statements: 

(a) /0' ji(Xu) du < oofor every positive t. 

(b) Jq \y(Xu)\2 du < oo for every positive t. 

Notice that 

/ exp[k(y, x)]fi(dy\x) = / r){dy\x) < oo 

for all x eV0. Moreover, 

\y\2 C 13 + T" + J 
C 
(exp[k(y> x)] ~ l)Kdyw 

\y\2 C = ~P~2~J 
C 
(txp[k(y> x)] " l)^dy\x) = °- 

Thus the multiplicative functional M is a local martingale. 

Proposition C.I: Suppose that Assumptions C.I, C.2, and C.3 are satisfied. 
Then the local martingale M is a martingale. 

Proof: We show that M is a martingale in three steps: 
(i) Since M is a local martingale, there is an increasing sequence of stop- 

ping times {rN:N = 1,...} that converge to oo such that 

jfoN _\Mt9 t < TN, 

[Mtn, t>TN, 

is a martingale and 

for all t > 0. 
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(ii) Next we obtain an alternative formula for E(l{t<^N}\X0 = x) repre- 
sented in terms of the original X process. The stopping time f N can be rep- 
resented as a function of X. Let rN be the corresponding function of X and 
construct 

jfoN \Mt, t<TN, 

[MTyv, t>TN. 

Recall that 

M? = <Pt(X) 

for some Borel measurable function <?>,. By construction, 

Then 

£(M,l(,<Tw)l*o = x) = E(M?lll£TNi\X0 = x) 

= E(lit<iN}\Xo = xj, 

where the second equality follows from the Girsanov theorem, 
(iii) Note that 

limGE(l{tN<t}\X0 
= x) = l 

by the dominated convergence theorem. Thus 

E(Mt\X0 = x)> jim E(Mtl{TN<t]\X0) = 
jim £(1{^<O|ZO = x) = 1. 

Since M is a nonnegative local martingale, we know that 

E(Mt\X0 = x)<l. 

Therefore E(Mt\X0 = x) = 1 for all f > 0 and M is a martingale. Q.E.D. 

APPENDIX D: Existence 

We next establish the existence results discussed in Section 9. We divide our 
analysis into four lemmas. The first lemma states that under Assumption 9.1, 
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F is bounded. The second lemma verifies that if Assumptions 9.1 and 9.2 are 
satisfied, and F has a nonnegative eigenfunction, there exists a strictly positive 
solution for the principal eigenvalue problem for the semigroup M and as a 
consequence of Proposition 6.2 we obtain the desired decomposition of the 
multiplicative functional M. The third lemma shows that if G is bounded, Gs 
is an eigenfunction of F. The fourth lemma shows that the boundedness of G 
follows from Assumptions 9.2, 9.3, and 9.4. 

Lemma D.I: Suppose Assumption 9.1 is satisfied. Then F is bounded. 

Proof: Let a = a + e with e > 0. Construct the multiplicative process 

W;=e*p<-a,,M,£g. 
Then 

is a local martingale, as we now verify. Note that 

Nt = MtV(Xt)-V(X0)- I MuAV(Xu)du 
Jo 

is a local martingale. Thus 1/(V(Xq)) f^ exp(-au) dNu is also a local martin- 
gale and 

vk)[exp(-au)dNu 
V( X ) Cl V(X ) 

= exp(-aOM,-^(-l 
V( X ) 

+ a/ exp(-au)Mu-^ 
V(X ) 

du 

[' , ,„ V(Xu)kV(Xu) A 

= n;. 
Since N* is a local martingale, Fatou's lemma implies that 

E(M;\X0 = x)+ f eE[M*u\X0 = x]du<l. 
Jo 

Since this holds for any t, 

r v( x ) ii 
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Inequality (28) guarantees that 

F<A= f~ exp(-at)E\Mt^^il,(Xt) X0 = x]dt Jo L "(-*o) J 

defines a bounded operator in L°°. Q.E.D. 

Remark D.I: The irreducibility Assumption 9.2 on F that we use in our 
next lemma can be obtained from more primitive hypotheses. Write K(x, A) = 

/0°° exp(-at)E[lA(Xt)\X0 = jc] and suppose that K satisfies the counterpart to 
Assumption 9.2. Then since V > 1, F will satisfy Assumption 9.2 whenever M 
is bounded below by a positive number. Another set of sufficient conditions 
is obtained by first assuming that there exists a function p(t, x,y) such that 
p(t, x, •) is the conditional density (with respect to v) of Xt given X0 = x and 
that p satisfies the following restriction. Let {Ak : k = 1, 2, . . .} be an increasing 
sequence of compact subsets of the state space Vo whose union is the entire 
space. Suppose that for each integer k and x in the Markov state space, there 
exists a T such that for t > T and y e Ak, p(t, x, y) > 0. In this case we may 
define for each t > T and each y e Ak, f(t, jc, y) = E[Mt\X0 = x,Xt = y]. If we 
further assume that there exists a version of this conditional expectation that 
is a continuous function of (t, y) and that M > 0, then Assumption 9.2 must 
hold. To see this, notice that if v( A) > 0 and Ak = Akn A, then there must exist 
a positive integer k for which v(Ak) > 0. Choose af > T and set 

c= inf f(t,x,y)>0. 
T<t<T',yeAk 

Then 

,r 
/ exp(-at)E[MtlA(Xt)\X0 = x] 

JT 

> / exp(-at)E[MtlAk(Xt)\XQ = x] 
JT 

= / exp(-aO^{lA,(^)£[M,|^0 = ^^]|^o = ^} >0, 
JT 

since v(Ak) > 0. Given our restriction that V > 1, Assumption 9.2 must hold. 

Lemma D.2: Suppose Assumptions 9.1 and 9.2 are satisfied and ¥<f) = X^for 
some nonnegative bounded <f>. Then V<f> is a strictly positive eigenfunction for the 

semigroup {M, : t > 0}. 
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Proof: Assumption 9.2 guarantees that <j> is strictly positive. Moreover, 

r°° 
AM,0(jc) = M,F</>(*)= / exp(-as)Mt+s<f)(x)ds, 

Jo 

where the right side follows from Tonelli's theorem. Hence 

exp(-as)Ms<f)(x)ds 

= exp(aOA</>(x) - exp(af) I exp(-as)M50(jt) ds. 
Jo 

For a fixed x, define the function of t: 

g(O = exp(-aOM/</>U). 

Then 

\g(t) = \<f>- f g(s)ds 
Jo 

and g(0) = (f>(x). The unique solution to this integral equation is 

g(O = 
exp(-0</>(x). 

Hence cf> solves the principal eigenvalue problem for M, and V(/> solves the 
principal eigenvalue problem for M. Q.E.D. 

Lemma D.3: Suppose F and G are bounded and Assumption 9.2 is satisfied. 
Then ¥Gs = \Gs.24 

Proof: Since G is bounded, for any bounded ̂ , 

i/j = (AI - F + v (g) s)Gty = (AI - F)Gi/> + s f Gi[/ dv. 

Furthermore, since A is in the spectrum of F, choose a sequence { i/f 7 : 7 = 
1,2,...} such that Gif/j has L°° norm 1 and that 

lim(AI-F)Gi/<;=0. 

24This result is essentially a specialization of Proposition 4.6 of Kontoyiannis and Meyn (2003) 
and is closely related to Proposition 5.2 of Nummelin (1984). We include a proof for sake of 

completeness. 
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The sequence {/ Gif/j dv] is bounded and hence has a convergent subsequence 
with a limit r. Thus there is a subsequence of [ip} :j = 1, 2, . . .} that converges 
to xs and, in particular, r ̂  0. As a consequence, Gs = </> is an eigenfunction 
associated with A. Q.E.D. 

Lemma D.4: Under Assumptions 9.2, 9.3, and 9.4, the operator G is bounded 
onL°°. 

Proof: Assumption 9.4 implies that 

Fl < 
			 + c¥s, r + a 

where c = c/(r + a). Moreover, 

GFs< ( 
J 

sdv + XjGs 

and, in particular, since Assumption 9.3 is satisfied, GFs is a bounded function. 
Given that Assumption 9.4 applies for any r, it applies for an r such that ̂  

is less than A. Moreover, 

\-\¥ - s <g> dv)\ < 
			 - + ^-Fs. (r + a)A A 

Thus 

\-n(F-s®v)nl 
n-\ n-\ 

< 1 - 6 ̂  A-'-^F - s (8) v)j\ + c ̂ 2 A^'^F - s ® v)jFs, 

where e = 1 - ^. Rearranging terms and using that fact that A~n(F - s ® 
^ri>o, 

n-1 n-\ 

e J2 A^'^F - s <g> i/yi < 1 + c ̂  A^-^F - s ® i/);"F5. 

Therefore, 
00 1 ~ 

y A^-1 (F - * ® *)'" 1 < - + -GFs 

and hence G is a bounded operator on L°°. Q.E.D. 
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