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This paper iihutrates how to use instrumental variables procedures to estimate the parameters 
of a linear rational expectations model. These procedures are appropriate when disturbances are 
serially correlated and the instrumental variables are not exogenous. We compare our procedures 
to some alternative estimators that estimate free parameters from restrictions implied by the 
Eukr equations. The procedures are applicable to a variety of linear rational expectations 
models, several examples of which we cite. 

1. Introduction 

In a variety of linear rational expectations models, agents’ de&ions are 
supposed ‘to. depend on geometrically declining weighted sums of expected 
f&zre ‘forcing variables’; These forcing variables are typically described by 
sto&&c..processes that the .agents ,tiew as being beyond their control. The 
follow@ at& examples cZ- such models. 
1 ._ 

& Gaga;i mo&l:of~por~*lio~ btdiznca. Letting pt be the logarithm of the 
..price Ieye&. yr -be : .the log&hpl .of the monels supply, and a, be a 

. . I station&y :&stqrMnce~ to .partfolio balance, Cagan’s model can be 
_ represeriteit ,W# ‘. 

j  
i. 

whefe E is the expectations operator, 0, is agents’ information set at 
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(ii) 

(iii) 
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time t, and cl<0 is the slope of the portfolio balance schedule.’ 
A dyrrumic model of demand for factors of production. Let n, be the 
stock of a factor of production, y, be the real wage rate of the factor, 
and q be’ a random shock to technology. Then a linear-quadratic 
version of a costly adjustment model predicts that n, will obey 

where $I<A< 1, O-C/?< 1, S>O, and In, is the firm’s information set at 
time 1. Here fl is the firm’s discount factor, and 6 is a parameter 
measuring the costs of adjustment.2 
The permanent income model of consumption. Let c, be consumption, 24, 
non-human assets, y, labor income, and Q, ‘transitory consumption’. 
Then the permanent income model of consumption can be written 

where p is the interest rate and 3 is the marginal propensity to 
consume.3 

More examples of such models in which the geometric sums 
E(Ez 0 A’yt+.j ! s2,) appear can be found in Sargent (1979) and Hansen and 
Sargent (198 1) As Hansen and Sargent (1981) show, such geometric sums are 
i.nportar~ terms in a wide class of models that come from Smite horizon, 
Grear-qua&atic stochastic opthnum problems. in such models, it is common 
t that the values of the forcing variable yt are observable both to 
t e~nometriciain and the agent, but that only the agent- observes the 
forcing variable 4. The ‘hidden variable’ a, thus becomes one source of the 

in the equations fit by the econometrician [W .Hansen and ‘Sargent 
)I. Both the y and the a processes usually are modeled as being beyond 

01 d the ptivate agent. The private agent is assumed to face these 
as a ‘price taker’ or ‘income taker’. However, for standard 

n~~~~ Pquations reasons, this assumption does not imply tha.t the y 
wti be strictly econometrically exogenous with respect to the 
variable. Indee& thrll assumption that y is uncontro!led by the agent 
even imply that y fails to be &anger caused by the private agents’ 
varia&. However, in most of the tWrnical literature published to 

,.- 
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date,” estimatitin of linear rational expectations models has been treated 
either under the assumption that y is strictly exogenous, or under the weaker 
assumption that y is not Granger-caused by the private agents’ decision 
variablee5 

The purpose of the present paper is to describe optimal estimation 
procedures in: the ease in which y is not strictly exogenous, in which the 
agents’ decision 1’ %.>tiable in ,general Granger-causes the forcing variable y and 
in which full-blown maximum likelihood procedures are thought to be 
undesirable or inapplicable‘ For applications, this is an importa.ut extension 
to existing .estimation procedures. Thus the theoretical presumption for each 
of the examples given above is probably in favor of dynamic feedback from 
market-wide measures of the decision variable on the left-hand side of the 
equation to the y process on the right-hand side.6 

This paper proposes estimators that can be interpreted as instrumental 
variables estimators. The basic idea of this paper is to carry out identification 
and estimation of the model’s free parameters from the projections of the 
decision variables and the forcing variables on instruments, and the 
projection-of the instruments on their own lagged values. These projections 
are characterized by a set of cross-equation restrictions involving the free 
parameters of the model, restrictions that are often stringent enough to 
permit identification of the model’s free parameters. It is significant that the 
instruments need not be strictly econometrically exogenous with respect to 
the left-hand side or decision variables. It is even permitted that the decision 
variables Granger-cause the instruments. Further, the disturbances in the 
equation are permitted to be serially correlated, though the procedures do 
not require the analyst explicitly to parameterize the stochastic process for 
the disturbances. Among other things, this paper helps clarify the 
relationship between Granger causality and the criterion for appropriateness 
of an instrument. 

There are two principal virtues of the instrumental-variables-Prpe 
estimators of the present paper ois-u&s the maximum likelihood estimator 
proposed, e.g., by Hansen and Sargent (1980). First, fewer parameters need to 
be estimated simultaneously than are required with the maximum likelihood 
estimator. Second, precise parameterizations of the %listurbances need not be 
specified with the present estimators, while they must be with maximum 
likelihood; 

While. the estimators described are applicable to a variety of linear ratii*na.l 
expectations models, we have chosen te describe them by referring to our 

4A few simple examples exist that use maximum likelihood estimators that explicitly take 
account of feedhck from the Ml-hand side variable to yp For example, see Sw:nt (1977). 

‘For example, see Hansen and Sargent (1980). 
%ee Kydland and Prescott (1977) and Sargent (1980) for discussions of how linear dynamic 

codpetjtivc equzbrja can be calculated when th<Te is feedback from ma: klet-wide values or 
agents* decision variables to prices or incomes that individual agents view as ancontrollable. 
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third example, $hat of the permanent income consumption function. This 
example is one in which the failure of y to be exogenous is well known and 
wi&Ay described in econometr& textbooks. It will be evident. how our 
~th~ app@ to other examples, including those given above. 

We gu on to compare our methods to some related, methods proposed by 
K~~UMB (1979) and Hayasti (1980) that directly estimate Euler equations, 

avoid dealing explicitly with geometrica!ly .declining sums of 
ure forcing variables. While many of the comtients we make 

about estimation carry over to these related methods, it turns out that ,these 
other methods ignore theoretical restrictions and therefore sacr&e :statistical 
efR&ncy relative to the methods that we propose. It is convenient to make 
this Latter point in the cc:bntext of the second example, a dynamic model of 
demand for factors of production. 

This paper is organized as follows. In section 2 we specify precisely a 
of the permmem income modei of consumption and discuss the 
ric res&ictions implied by the model. We characterize the model by 

ions in various directians that can be utilized econometrically. In 
n 3 we propose some instrumental variables estimators of the 

ters of the model and discuss their large sample properties. We also 
indii how the estimator of Hayashi and Sims (1982) compares with the 
optimal &trumental variables estimator. Section 4 contrasts our methods 

th Euler equation methods proposed by Kennan (1979) and Hayashi (1980) 
that do not work &e&y with geometrically declining sums of expected 
hrture forcing variables. Our conclusions are in section 5. 

we examine the restrictions which emerge from.a permanent 
consumption. We consider a linear model for consumption 

a5 the form 

e, is consumption at time t, a, is “trarisitory 
t income at f. The econometrician 

consumption~ at t and ypt 
is assumed not to have 

an transitory consumption or on permanent income. ‘We 
-‘Jut w*t properties we ~~Ifor @an&osy : co4syiqnp@qn 

focus 0n our working definition of permanent income. We / , _^ ,. , 

(2.2) 
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where p is the real interest rate assumed constant over time, A, is non- 
human assets at time t, yt is after tax labor income at t,’ and I.?,[-] =E[.I Sz,] 
is the mathematical expectation operator conditioned on a set of information 
D, available to private agents at time t. ’ Substituting (2.2) into (2.1) and 
making explicit the information set sl, available to the consumer at t, gives 

c,=f@--6) A,+ 2 diEyr+j152, +a,, 
j-0 1 

2 

(2.3) 

where 6=(1 +p)- ‘. We assume that 0, =I O,_ 1 3 52,_ 2 I(. . and that {yt, 
Yt-I,**.}4 

To motivate definition (2.2) of permanent income, consider a setup in 
which infinite lived consumers face the sequence of budget constraints 

A r+1=(1+P)A,+(1+PXY,-c3, t=t*,t*+1,-.., 

A,, giLen.” 

It is assumed that y is a stochastic 
the consumer. Solving the stochastic 
the terminal condition 

lim (1 +p)-“+-%,A,+,=0 
I-+m 

gives the ‘realizable’ solution 

(2.4) 

process which is beyond the control of 
difference eq. (2.4) forward and imposing 

m 1 j Xc > E&,+j=A,+ E 
1 j 

j=O lfp ( ) 
- &y,+jzW3 

j=o 1 -t-p 

(2.5) 

(2.6) 

where wt is the consumer’s total wealth, human and non-human. Eq. (2.6) 
states that the expected present discounted value of consumption equals the 

‘There are some important empirical issues outstanding h the literature on consumption that 
relate to the definitions of A1 and y,. These issues include whether government bonds and social 
insurance obligations should be included in non-human wealth, and how future +sx Iiabilities 
required to service these claims should be treated. 

‘It is the presence of the transitory consumption term that dilIerentiates the consumption 
model. here frQm the one ~con&lered tjy Wall (1978). Hair’s short-cut econometric procedure rehes 
c&ica&an~&e abs@m..of tliis transitor~eonsurpption term [see Flavin (198l)J Our definition 
of.perrm@nt.ik&ie~di&ers fm’ &at used by Sargent (1978) because of our mclusion of non- 
human assets in our measure of permanent income. 

%f we:take cZ.4) Wmlly, it, implies that a stochastic singularity exists in the joint (c, y, A) 
process; Weassume;tbat &is singularity does not exist. Instead we implicitly assume that there 
are shocks to this budget constraint which might take the form of unobservable (to the 
econometrician) components of income. 
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t vrtialuc of non-human assets A, plus the expected present discounted 
c of iabor income. For convenience$rite~(2.6) as 

‘_ 

otke that the constant level c,,& of planned 
(2.5) is found from 

?,=(I -6)w,=(l--8 

consumption at t that 

(2.8) 

According to one widely accepted definition, Et defined by (2.8) is the level of 
permanent income: it is the rate at which the consumer expects to be able to 

,ume indefinitely given his current toti1 wealth. Specification (2.2) 
embodies t& iiotion of permanent income.1o 

ETA to specify :properties that we assume about transitory 
The random process a is assumd to, have mean zero, .but it 

correlated. Further, it can be correlated with the y process. 
not assume that y is econometrically exogenous in (2.1). 

Obviou&y, however, to give content to (2.3) and to proceed with estimation, 
orthogonal&y conditions must be imposed on a,. We assume that there 

a Ip x 1) vector x, that is included in i2t satisfying 
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and therefore the x’s do not have to be ecc>nometrically exogenous with 
respect to c.l I We define a reduced information set &= (x,, x,._ 1,. . . }. The idea 
uxiderlying our estimation strategy is to exploit the orthogonality conditions 
(2.9) and, in a sense, to employ the x process as an instrument for y. 

Now rewrite (2.3) as 

where the ‘error’ s, is given by I2 

(2.10) 

(2.11) 

By construction the error s, is orthogonal to GJ~, since di, is included in 0,. 
That is, by the law of iterated projections, we havei 

E(EY~+jIddt--EYt+jl~t)[~t~EYt+jI~t-EYt+jIQit=o. 

In order to calculate the projection of permanent income onto the reduced 
information set Cp,, we need to make some precise assumptions about the 
forcing variables. We calculate this projection to obtain a set of cross- 
equation restrictions that can be exploited in estimation. We make the 
convenient assumption that (y, A,x’, u, s)’ is a vector, covariance stationary, 
linearly indeterministic stochastic process.14 In what follows we assume that 
conditional expectations and best linear predictors coincide. Alternatively, we 
couId abstain from this coincidence assumption and instead assume that 
E[=I@J denotes the hear least squares projection operator onto the 
infoimatiun stt G$. 

Since x is a covariance stationary, linearly indeterministic stochastic 

“in fact, c would in general Granger-cause x even if (2.9) were extended to hold for all j, and not 
just jzo. 

“The idea of replacing the information set Q, with a subset a,‘,, thereby adding an error term 
like s,, was su,ggested by.$hiUer (1972),in his study of the term struct,lre of interest rates, and was 
exploited in a dilated context by Hansen and Sargent (1980). 

z3’T’he law of interated p ro’ections states that E{y ) x) = E(Ey 1 x, z) 1 .x), where y, x, z are random J 

~~$ble and E is either the mathematkd expectation or the linear least squares projection _~&$@!t&* 

‘%ee Rozanov (1967) for a definition of covariance stationary, linearly indeterministic.. In 
form#y ~~~8yir1g, t&e_ large sample properties of the estimators we propose in the next section, 
Hbnsen’ @~O~!~@&E@WXW this. assumption to require strict stationatity. In order for these 
stationarity assumptions to be consistent with the budget constraint (2.4), it is necessary to 
restrict /I to be greater than one. In the discussion which follows, all variables will be viewed as 
deviatiow from their unconditi&al means. 
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process, it has a Wold vector moving average representation 

&i1=4J&?t+19 

where 4L)=I -+alL+ . . . and where 

(2.12) 

et+, =%-1 -@%*1I @A* (2.13) 

We add the additional restrictions that 

(2.14) 

and that the function .F is bounded away from zero where 

(2.15) 

symbol ’ denotes both transposition and conjugation. Among other 
these assumptions are &kient to impljr that there exists a one-sided 
or JI=zQI--l or quivalentky that x has an autoregressive representation 

(2.16) 

wibre y(Lj-I-p&- . . .” The dimension of e is (p x 1) while 01 ;rind y are both 
@ x p).15 

We write the projection of y, on @t as 

(2.17) 

where f?&j=e,+e,L+ .*I. That is, we have the orthogonal decomposition 

Yf=Wh+% (2.18) 
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be denoted 

recalling that 6 = (1. + p)’ l. Substituting (2.19) into (2.20) gkes 

WM~~ 1 
j’:=1_6L-1et+1_bL-1Ut. 

(2.20) 

(2.21) 

Note that u,+~ for j > 0 is orthogonal to the information set at = (x,, X, - 1,. . . } 
by virtue of the orthogonality conditions EU,X,_j=O for jl0. We use the 
Wiener-Kolmogorov prediction formula to compute 

(2.22) 

where [ ]+ is the ‘annihilation operator’ that instructs us to ignore negative 
powers of L.16 That is, 

Using the lemma in Appendix A of Hansen and Sargent (1980) to evaluate 
the above term in [ ]+, we obtain 

Ey*, @ = 

[ 

BiL)wk~L-- fwM4 
t t 

1 

et 

1-6L-1 - 
(2.23) 

Since o$L)e, = x, and a- l = y, eq. (2.23) can be written in the equivalent form 

Ey+D,= 
[ 

wd - x- ‘WI@) - w 
l-SL-’ I 

xt . (2.24) 

Substituting (2.20) and (2.24) into (2.10) gives the equation 

J?__ ct l+p 
BP 

-- 

A’+l+p [ 

8(L)-sL-10(s)g(s)-‘Y(L) x +rs -TV 

1--6L-l 1 t t ‘1’ 

(2.25) 

’ “SW Whittle (1963) for derivetion of the formula ad examples showing its usefuiness. 
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ting (2.18) and 2.16), we also have the projection equations 

(2.27) 

s is the hallmark of dynamic rational expectations models, eqs. (2.25), 
and (2.27) possess a .set of cross-equation restrictions, indicated by the 

of the parameters of the lag operators a and 0 in (2.25). The 
of these parameters reflects that consumers are making use of the 

~XMB of the y process in forming estimates of their permanent mcome. 
e existence of these cross-eqt’s -Aon restrictions can be used to identify and 

~t~~te the parameuzs of the operators y and 8 and the parameters /3 and p, 
c%mw& in the modei are the foilowing three sets of orthsgonality 
itian3: 

Ex, _ j& + s,) = 0, (2.28) 

EXt _ j& =’ 0, (2.29) 

Ex,_p’,. 1 =o (2.30) 

for jz0. Recal! that J;, is a (p x 1) random vector, so that Ex~__&~+s,) and 
are @ x I) vectors, while Ex, _f:+ 1 is a (p x p) matrix. 
orthogonal&y conditiotis (2.29) and (2.30) stem directly from the 

ion of (2.26) and (2.27) as projection equations. In other words, 
constructed by projecting y, onto Gt and (i.27) by projecting x,+ 1 

@#. These orthogonal&y conditions emerge from the ‘orthogonality 
which states that foreeast errors associated with best linear 

s must be orthogonal to all random variables in the information set 
in constructing the forecast. The orthogonahty condition (2.28) sterna 

from the de&&ion (2.11) of s, together with the assumption that 
=O for iz 0. Orthogonality corrdition (2.28) states that the projection 

&f + pj onto @, is 

(2.3 1) 

tion equakrk also. 
ated consists of the three sets of eqs. 

of these as reduced 
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form equations since they define the projection of c,- /$A,/(1 -t p), y, and 
x,+ 1 onto at. However, this interpretation is not quite correct. Tbe random 
variable c, --/Q&/(1 -f-p) is not observable to the econometritian since it 
involves the unknown parameters fl and p. In the absence of knowledge of /?, 
p and the cross-equation restrictions, eq. (2.25) is not wei defined as a 
reduced form equation. More plausible candidates for the reduced form 
equations for our model, are the projections of c,, A,, yt and x,+ 1 onto !Pp,. 
Since all of these variables are assumed to be observable, the coeficients of 
their projections onto the ob;iervable information set can be automatically 
identified. In fact eqs. (2.26) and (2.27) are such projections. Therefore, the 
parameters yl, y2,. . .,&, O,,. . ‘, are identified.l’ Identification of the 
remaining structural parameters, /3 aIa_d p, could be cast in the conventional 
terms of whether they can be inferred from the reduced form coeffZents of 
the projections of c,, A,, y, and x,,. 1 onto GIp,. It turns out that we do not 
have to estimate a!! of the restricted reduced form projection equations 
simultaneously to achieve identification of the structural parameters. For this 
reason we will address the issue of identification of /? and p in terms of the 
orthogonality condition (2.28) using the fact that the parameters of y and 8 
are identified. 

Suppose that /P and 
equation restrictions to 

1 s* =- 
1 -tp*’ 

p* allow orthogonality condition (2.2.8) and the cross- 
be satisfied. Let 

)1*= BP , PP* 
-l+pfl+p* 

p*p* t?(L) - s*l.- fey - $@L) 
x*o’l+p* - 

[ 1-6”L-l I- 

(2.32) 

(2.33) 

(2.34) 

“It is a well-known result from linear prediction theory that the orthogonai;ty conditions 
(2.29) and (2.30) uniquely define elements u, E Qi, and w, E @, such that 

Yt-vt=u,, x,+l-wt=e,fl. 

The parameters of y’ and 0 given in (2.26) and (2.27) are identified as long ds the lag operatol;s 
are not over paramelierized in the sense that ,if y ‘* and 8* correspond to a vector in the 
admissible parameter rtpace,other than the true parameter vector, then 

8(Q”&$B(L)x,=~t, y’(L)*x,,s?‘(L)x,= wt. 
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*j * ’ ’ A --,_ - c ” A _- -- 
ct lap* t:= t l+p t 

q*A 
t 

zc- 
t 

~~~pp~i~ the projection of A, onto et is given by 

Ex, _pt =o 

and ~2&=~,+@+- . . . . where [j is (1 x JF) for iLO.“* 
tituting (2.29, (2.31) and (2.36) into (2.351, we obtain 

(2.35) 

(2.36) 

(2.37) 

VP* ct l+p” 
--A, = [x(L)- q*t(L)]x, - ft+ + s, + a, 

= n*(L)xr + s(* + tq, (2.38) 

ti&atkm and estimation strategy being discussed is a limited information one since 
into account the restrictions implied by the budget constraint (2.4). If we 
to this mnstraint that is orthogonal to $ and project both sides of (2.4) onto 

~J=(n+?)~~,I~i,7+(f+p)ELy,I~,~-(3.3-p)EC~~I~,~. 

kwnstid& on &+). Using the procedures described in section 4, it can be 

+4l +PmW-nl~)l 
(1-X) ’ 

d to is a (1 x p) vector of parameters. Imposing these restrictions implies 

G, 47 ~$9 aad x,+ r onto 9, subject to the re;etrictions given .above 
in the paper. The: estimators which we 

a stra~~~~fo~ar~ way to accommodate these 
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where $ + a: satisfies orthogonality condition (2.28). Projecting (2.38) onto 
@‘t, we o’btain 

r/*t(L)x, = [n(L)- 7r*(L)]x, 

(2.39) 

(2-W 

for V* and z* given by (2.33) and (X4), respectively. In order for our model 
to be identified, we assume that r is not of the form (2.40) for any admissible 
choice of fl* and p*. This assumption seems innocuous since it is ruling out 
only singular or very special structures in t and n. We conclude that all of 
the parameters of our model are identified via the cross-equation restrictions 
and the orthogonality conditions (2.28), (2.29) and (2.30). 

We now proceed to discuss issues that emerge in estimating the model 
parameters. We begin by indicating that estimators such as generalized least 
squares and versions of maximum likelihood are not easily applicable to 
estimating (2.25), (2.26) and (2.23). Maximum likelihood estimati,on requires 
that more auxiliary assumptions be made about the temporal covariances of 
(~+a), U, A, y. and x than have been made above. Notice that the preceding 
constructirm in general produces (s +a) and u processes that are serially 
correlated. Furthermore, the nature of the s process in general depends on 
the time series properties of elements in the broad information set 9, which 
private agents are permitted to see but which the econometrician has not 
necessarily been assumed to see. In addition, in neither (2.25) nor (2.26) are 
x’s strictly econometrikx ‘+ly exogenous. That is, im general the disturbances 
are correlated with future values of the x’s. This implies that attempts to 
%orrect’ for serial correlation in the disturbances via the implicit use of filters 
as occurs in time series versions of generalized least squares will result in 
estimators that are statistically inconsistent. The reason for this is that simply 
filtering (2.25) and (2.26) will distort the orthogonality conditions required for 
consistency, since the x’s are not strictly exogenous. 

It is of some interest to note that not only do the x’s fail to be strictly 
econometrically exogenous in (2.25), but also in general c will Granger-cause 
X. That is, given lagged X’S, lagged c’s will help to predict x,. This is 50 in 
spite of the orthogonality conditions (2.28), (2.29) and (2.30). In general, 
s, and Us are both correlated with future x’s so that c, contains information 
that marginally helps toa predict future x’s. The upshot of these remarks is 
that in the present context, failing a Granger-Sims test for the null 
hypothesis that c fails to Granger cause x does not necessarily signal model 
misspecification; in particular, it has no bearing on whether or not the 
o~t~og(~nality condition (2.28) b appropriate. 
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It is also worth mentioning that from the point of view of extracting good 
e&mates of the ‘structural’ parameters /I? and p, it is not appropriate to 

r& for a specification of X, for @J that predicts y? as well ai possible. 
two speoiications for &= {x,, x,_ I,. . .), the one that minimizes E(y: 
@J2 =& is not necessarily to be preferred. The reason is that for 
ng consistent estimates of the structural parameters, the orthogonal&y 

~n~it~~ns EC, -1% e SJ =O, j 20, are relied upon. The value of the prediction 
. 

~~f~~ variance cr,, 2 has no bearing on which of the two competing 
tiona for @t more nearly satisfies the orthogonality conditions (2.28). 
the motivation of the prmdures in this paper is the presumption 

that current and fagged values of y itself perhaps should be excluded from @, 
use such a specification would violate (2.28). This is true in spite of the 
~mption that including lagged y’s in Gj, would usually decrease the 

~~~~~~n error varianee. 
fr: condusion, in this section we have derived a statistical model of the 

~~~rn~io~ function aud have shown how orthogonality conditions (2.281, 
j aud (2.30) can be used to identify the free parameters of (2.25), (2.26) 
[2.27), We have yet to suggest estimation procedures other than to 

hat asymptotically efkierit estimation requires something different 
serial correiation conr&:tions implicit in time series versions of 

generalized least squares. In ths: next section we discuss some correct 
res for estimating the parameters of the model. The first procedure 

involves estimating the parameters by using method of moments 
s and choosing admissible parameter values that minimize a 
averag of a specifkd nmmber of the sample counterparts of the 

ation orthogonal&y conditiomr (2.28), (2.29) and (2.30). The weighting 
is chosen with a view to achieving the minimum asymptotic 

covar~ance matrix for estimators that exploit the same fixed set orthogonaky 
tion~ We describe the details involved in executing this estimation 

In turns out that these ‘generalized method of moments’ (GMM) 
are not asymptotically as efficient as maximum likelihood, 

computationally more convenient and, in a sense, more 
estimators described above use only a fixed finite number 

nality conditions independent of sample size. For this reason, we 
gate the question of how to use all of the available orthogonahty 

, which are infinite in number. 
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estimate the parameters of the model specified in (2.25H2.30). We begin by 
imposing finite parameterizations for the operators y and 8. In particular, we 
assume that y(L) = I - ylL--. . . -y&Y and 0(L) = &, + o1 Lt. . . -+ t&L’. By Grtue 
of the covariance stationarity assumption, the zeroes of det y(z) lie outside 
the circle. For the purpose of this exposition, we shall set r = q - 1, although 
it will be evident+ how the estimation procedure is to be modified if q - 1 fr. 
Performing a series of calculations similar to those applied by Hansen and 
Sargent (1980) in a different context, it 1s possible to derive explicitly the 
coeficiente of the polynomial in Lthat appears in (2.24). For convenience, let 

us define that polynomial as $(L)=~=, $jli!, so that 

It can be shown that 

~j=68(6)y(S)-“(yj+,+dyj+,+...+S’-.’~Jrt 1) 

+(8,+68j+l+...+6’-j6,.), j=l,...,r. (3.2) 

The expressions in (3.2) provide us with a convenient explicit representation 
for the restrictions across the parameters of (2.25), (2.26), and (2.27). 

Solving (2.25), (2.26), and (2.27) for (q+s;,), u,, and e,, 1 and substituting 
into the population orthogonality condilons (2.28), (2.29), and (2.30), 
respectively, gives 

EX,_, ( C~-&A,--BP i $j&-j)=O, 

l+p j=O 

.&_, ( xi+, -- i Xi_jY;+l =O 
j=O 1 

(3.3) 

(3.5) 

for z=:O, l,..., P, where P is the number of lagged x’s used in the 
orthogonality conditions. the vector of observables 
(c,, A,, y,:, r; + J. Let the free arameters of f. e model j?, p, ylr~ ..r~r+ i, 
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8 *, . . .* & be denot:r;d by the Q dimensional vector & Let 

qLd= I -BP*_ cr_y oo”*+p”o 
0 0 0 _8j_l , !=LJ+l 

! 000 -rj 

i 

sad the @s are Mmed in (3.2). The parameters of A&.) depend on the 
parameters co via the cross-equation restrictions exhibited in (2.251, (2.26), 
!2.2qs 3.1) and (3.2). It is convenient to have notation for the functio,ns of the 
data and t!~ parametzrs whose mathematical expectations are zero according 
to the orthogon&y conditions (2.281, (2.29), @I (2.30). So we define the 

(3.8) 

denotes the Kronecker product and where c is an elem!znt in the 
parameter syaoe contining the true pamet- vector Co. 

n (3.8) defines fd[o) as EL p(P+ lXp+2) = R vector of random 
whose expected values are restri+d tq_be zerp py .,(3.3), (3.4) and 

czmtent of the theory ia (2.2!$ , (2.29) and (2.$0) can now be 
zy @ated as Et-J&)-j = 0. _ ,. 

~v&gzr~r has a $,ampfe of- &&&b&s & z, f& t+ 1 p 
for each parameter { in the admissible- p&nieter ’ @%%i’ one 
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(3.9) 

as an estimator &#‘#‘(a. Since E&(&j)=O, we can think of estimating &, by 
finding the element [, in the parameter space that makes g#) small in some 
sense. To be more precise, we choose a ‘distance’ or weighting matrix S that is 
R by R and positive definite, and let CT be a minimizer of 

m 5) = &KYs - lhtr). (3.10) 

We will describe appropriate procedures for selecting ihc distance matrix 
shortly. 

For a given value of the matrix S, mu:iimizing (3.10) is, a standard non- 
linear minimiz ation problem. In practice, an ‘acceptable gradient’ method 
could be used to minimize (3-N) with respect to t1.l’ From the viewpoint of 
this minimization, formula (3.2) is a great help, since it explicitly characterizes 
the complicated cross-equation restrictions that are embedded in A(L; -). This 
means that hill-climbing methods using analytical gradients of (3.10) are 
feasible. Also gT(Q can be expressed in terms of 

forj=O,..., P. Thus, the vectors of sample moments 

(3.1 lj 

(3.12) 

forj=O,..., P and k=O , . . ., r need only be computed once and stored in the 
numerical minimization of (3.10). 

The estimator described above is of the same form as the nonlinear 
instrumental variables estimators considered by Amemiya (1974, 1977) and 
Jorgenson and L&font (1974). However, the results from those papers do not 
apply to the estimation environment considered in this paper because in our 
model disturbance terms are possibly serially correlated and instruments are 
not necessarily strictly exogenous. Hansen (1982) provides a treatment of the 
large sample properties of G&&I estimators under regularity cond:‘rionc; that 
allow for serially correlated disturbances and instruments that are not strictiy 
exogenous. He establishes the consistency and asymptotic normality of 
estimators in a class that includes the estimators considered in this paper. It 
turns out that the asymptotic covariance matrix is dependent on the choice 

“See Bard (1974) for a description of such methods. 
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of dktance matrix j.. However, it is possible to determine an optimal choice 
of S that will ykld an estimator with the smallest asymptotic covariance 
matrix among t!re class of estimators that use the same set of orthogonality 
conditions. H[ansen demonstrates that the optimal choice of S is given by 

where 

S,= y R&j, 
jz-m 

(3.13) 

ate that S, is the spectral density matrix of the random vector j&) at 
frequency zero. Under the mora special assumptions that the z process is 

an or is a stationary process whose fourth-order cumulants are zero, 
Sr In% aa alternative representation 

where 

Rcjjj = E 

Xf 

x2-1 
0 

. 

. 1 
Xf-P -I 

(3.14) 

(3.15) 

R = E[d& -j], 

.XU9=EExf&- jl9 
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then it follows that 

S!&) = 

&W e'"S,(co) . . . eiP"S,Jo) - 
e-imSx(w) S,(o) . . . eitp- p~~Sx(co) 

. . . . . . . . 
e-ipmSx(co) e-I’- ‘)“&(o) . . . &cw 

* 

(3.17) 

There are some cases in which a researcher may wish to avoid making 
assumptions that justify using the representation of S, given in (3.14). For 
instance, consider situations in which conditional expectations and best 
linear predictors do not coincide. A researcher may wish to assume that the 
projection eqs. (2.26) and (2.27) define the linear least squares prQjections of 
yt and x,+ 1 onto &, but avoid making the claim that these equations define 
the conditional expectations of y, and x *+ 1 given current and past x’s In 
such sitwhom unless fourth-order cumulants are zero, the represent.ation of 
S.r given in (3.14) is inappropriate arrd representation (3.13) should be used. 

Obviously, SI is not a matrix that the researcher can specify correctly a 
priori. In order to obtain an estimator that is optimal in the sense described 
above, it is only required that S/ be estimated consistently. This can be 
accomplished by using an initial consistent estimator rT, 1, forming the 
sample values f,c[,, 1) or 1(k, CT, i)z,, and then estimating :-i., using a procedure 
appropriate for estimating spectral density ma.trices consistently employing 
either formula (3.13) or formula (3.14). With this estimcit.or of S,, which we 
dentate ST, for the distance matrix, we can obta? cn optimal estimator of CO 
by minimizing .I@,‘, 0 by choice of 5. We d.enc:l :’ tl% minimizer by iT, 2. A 
consistent estimator of the asymptotic covariance matrix for iT,2 is 

where 

1 T ML**,) II+=- c 
Tt=l a; - 

(3.19) 

The initial consistent estimator CT, 1 can be obtained by minimizing J(S, * ) 

using a non-optimal choice for S, e.g., the identity matrix. 
This estimst& procedure uses R orthogonality conditions to estimate Q 

parameters. For roost applications R is greater than Q. Estimation of the Q 
parameters in essence sets Q linear combinations of the sample orthogonality 
conditions to zero, via the first-order conditions for (3.10). This lea.ves R -Q 
independent hnear combinations of the orthogonahty coltditions that are not 
set to zero in estimation but that should be “close tXej ze:re’ if the restrictions 
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impeded by l;lxe mode:\ are true. This provices us with a scheme for testing 
Gwen restlrctions. Hansen (1982) shows that TJ(ST, cT,2) is asymptotically 

as a &.i rquare with PE- Q degrees of freedom under the null 
is that the restrictions are true. Since J(§~, [T,2) is the mmimized 
he criterion function J(ST, .j for t7e second step optimal estimator, 

this :~st statistic can be computecl easily. 
e estimation scheme described above does exploit the serial correlation 

groper&z of the disturbances to construct an optimal estimator; however, a 
rc @her is free to adopt a relatively general specification of the temporal 

of these disturbances. This is an important advantage of this 
ure over m,aximum likelihood procedures. Maximum likelihood 

a more precise specification of the temporal covariance structure of 
instrp.tmental variables aq,d disturbances. There is an additional 

~~~*~p~tat~ona~ advantage in that one can estimate the parameters /3, p, 8, 
ii& y by numerically searching over a smaller parameter space using this 
instrumen~taf variat& procedure than is required. by maximum likelihood 
lwocedures. 

.f.Z. Estimators using all available orthogonality conditions 

In constructing the (GMM estimators described above, a fured number R of 
orthogonal&y conditions was employed independent of sample size. On the 

hand, there is. an infinite number of orthogonality conditions available 
in estir.zation, as is indicated by (2.28): (2.29) and (2.30). While the 
estimators described above use the R orthogonality conditions 

o~t~a~~y~ the only justi&ation for restricting attention to these 
orttrogonality conditions is computational simphcity. Typically by adding 
additional orthogonal&y conditions to the list used in estimation, it is 

ssib!e to construct an estimator with a smaller asymptotic covariance 
For this reason we ROW discuss ho?irrr to use all available 

~~~hogo~a~~ conditions ‘loptimahy’. This discussion takes place under the 
sumptions that were used to justify representation (3.14) of S/. 
-be an (n x p) matnx lag operator for J’= 1,2,. . ., Q, where n =p + 2. 

se the restriction that ~j be one-sided for each j, that is, 

Fimbe CW, assume that the elements of (W$+$, are square summable for 
e&&h J e can think of estimating co from the Q orthogonality conditions 

E (3..21) 
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orthogonality conditions (2.28), (2.29) and (2.30). We can write 

(3.22) 

1 
where dkt is the kth element of d, and FI$jk is the kth T?% of I$. Let us stack 
the *weighting’ lag operators Wjk into a matrix Wa: foilows: 

(3.23) 

i.e., IV(L) is a partitioned matrix polynomial in the lag operator with ~j,(L) 
in the jth row and kth t:olumn partition. Note that W(L) is (Q x N) where 
N=pn. 

In order to estimate co using w we can think of finding CT in some 
admissible parameter space that satisfies the non-linear equations 

(3.24) 

for j = 1,2,. . ., Q. Recall that d,=IZ(L; &,)z, so that (3.24) is just a sample 
versitin of (3.21). Practically speaking, there are difficulties in implementing 
this strategy. The lag polynomial W is allowed to be an infinite order 
polynomial and thus (3.24) may involve observations that are not available. 
Criterion function (3.24) can be approximated by letting x be equal to zero 
for all time periods in which observations are not available. It turns out that 
this has a negligible impact on -the asymptotic distribution of the estimator. 
Hansen and Singleton (1982) establish consistency and asymptotic normality 
of estimators of the form specified in (3.24) with relatively arbitrary choices 
for W: As is true for the ftite orthogonality ccndition case, the asymptotic 
covariance matrix of the estimator is dependent on the choice of the 
weighting operator W: “Dur purpose here is to describe the optimal choice of 
‘ITand suggest ways to construct optimal estimators in practice. 

Before representing an optimal estimator, we provide an expression for the 
asymptotic covariance matrix of an estimator that uses a rela,tively arbitrary 
choice of IX Let D[m be the (Q x Q) matrix given by 

(3.25) 
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We restrict our attention to choices of IV for which D[FVJ is non-singular.20 
Assume thirt Sd can be represented as 

We let 

(3.26) 

(3,271 

(3.28) 

Hansen and Singleton demonstra.te that the asymptotic covariance matrix of 
an estimator using weighting scheme Wis given by 

D(w)- ‘s(w)D(w)-- $‘. (3.29) 

in order to obtain an optimal choice of W; wc can minknize (3.29) by choice 
of a one-sided matrix lag operator IX Hansen and Singleton solve this 
optimization problem and obtains an explicit characterization of the 
s&tion. The one-sided constraint on W is imposed because we do not 
mume that the instruments are strictly exogenous. This ‘constraint is, in 

binding. 
To obtain an explicit solution to this optimization problem, let 

optimal weightmg lag operator IV* is given by 

fm j- 1, l . ., p1. The optima1 weighting scheme is dependent on the serial 
properties of tk dist@ancc~ -via JC? ,, the serial correlation 

of the instruments via y, and ,the ~r$&tron ,givti in$3.30) via Br. 

id imposiug this restrict&~, and whenever D[Wj is singular, 
matrix of the fzstimator as infinite. 
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The asymptotic covariance matri.x of this optimal estimator 
below. Let 

for j= 1, 2,. . ., Q, where HJkJL.) is (1 x p). Let 

285 

is provided 

(3.32) 

(3.33) 

The asymptotic covariance matrix of an optimal estimator is given by 

ff(e’“)[I@ V:lH(e'")'do 
1 

-l=~(w*)-l=s(w*)-l, (3.34) 

where V= E[qetJ. 
In order to construct an optimal estimator, it is necessary to have 

consistent estimators of IV, or equivalently consistent estimators of IC, y and 
Bj for j=l,2 ,..., Q,” T o accom,plish this, the fixed, finite orthogonality 
condition GMM procedure discussed earlier can be used to obtain a 
consistent estimator [ l,T. Using this estimator, estimated disturbances 

d t,T=wxT,l)zt (3.35) * 

can be formed for E = 1; 2,. . ., T. These disturbances. caa in turn be used to 
estimate the parameters of 1~. One practical strategy is to estimate K by 
running a &rite order forward vector autoregression. A key point is that 
these esttiators are constructed1 so that misspeciflcation of the serial 
correlation properties of d does not damage consistency but only the 
optimality of the resulting estimator. To achieve optimality, the choice of 
order of this vector autoregression should be an explicit function of sample 
size in cases in which d is aliiowed to have an infinite order vector 
autoregression representation. Nailsen and Singleton (1982) discuss this issue. 

A consistent .estimator of y is embedded in cl, r since a subset of the 
parameters of &, are the parameters of y. Estimates uf Bj for i = 1,. . ., Q can 

beobt?in=l from LT and estimates of { where .: 

% general, K and B for j= 1,2,. . ., Q 
f 

are infinite order lag polynomials. The sense in which 
the c&ffieienta &these ag polynomials have to be consistently estimated is discussed in Hansen 
and Singletoa (1982). 
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One possibility is to estimate r with a finite lag approximation using 
least squares. The’ lag length could be treated as fixed a ppio~i or as 

aur explicit function of sample size. A second strategy is to estimate 

jointly with (2.29, (2.26), and (2.27.L2* Eq. (3.37) has the associated 
orthogoaality condition 

ECvt-j =o, (3.38) 

f 20, The computational advantage of udng the procedurks we propose over 
maximum likelihood is that the parameters of rc are cot estimated 
simultaneously with the rest of the parameters of the mode1.23 Our 

Pr ures can avoid estimating IC altogether or in cases in which asymptotic 
optimalfity is &sired, initial consistent estimators of the parameters of rc are 
C%I@oyed. 

B&&e concluding this section, it is useful to compare the estimators we 
are proposing with est.im&ors suggested b.v Hayashi and Sims (1982). It turns 
out that this comparigon will provide us with a useful interpretation of (3.31). 
Hayashi and Sims suggest that instrumental variables estimators .be 
cocdtfucfed by first filterkg the disturbance term forward to remove serial 
c-or&a&m. In other words, apply rc(L- l)- l to d to obtain 

wt=K(L-‘)-A&, (3.39) 

w, is a white noise: and is orthogonal to all future 8s. -Now we can 
of estimating CO using ortbogonality conditions of the form 

“If @& = & + 5, IA.. . + &LC 3 cqs. (3.3g), (225), (2X), and (227) qe estimated jointly, and if 
an mth order vectm autoregresivc ~~romss, $he @p&U finite 

&mator descrii ia se&m 3.1: is~q%uisl in. the broader 
WhenPiscbomIfo r-+-m %!ben a version of ,budget & ._&G&, .,,;iY.o lorlti 

mial (see footnote lg), In such 
ti pry eveu though ((Z‘) is 

. . _ . . ,_ 
reskctims on the spectral density of d. For 

te these restrictions in estimating K. 
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for ilO. Since w is obtained from. di using a forward filter, orthogonality 
condition (3.40) is implied by orthogonality conditions (2.281, (2.29) and 
(2.30). Wayashi and. Sims discuss. estimation. of models that are linear in 
parameters and variables using a finite number of the orthogonality conditions 
like those in (3.40). They compare these forward filtered estimators to ones 
which employ a fixed finite number of orthogonaffty conditions without 
forward filtering and illustrate some advantages of forward. filtering. They 
also investigate the limiting behavior of the asymptotic covariance of both 
estimators as the number of orthogonality conditions employed gets large.24 

Let us now consider this form of the optimal forward filtered estimator 
using all of the orthogonality conditions. In particular, we consider 
estimators that use orthogonal&y conditions of the form 

Jwa-c,~~~~~dl= 0 (3.41) 

for j = 1,2, + . ., Q and wish to choose C1, C2,. . ,, C, optimally. Since the w’s are 
linear combinations of the current and future d”s, the optimal forward filtered 
estimator has asymptotic covariance matrix (3.34). In fact from (3.30), it is 
evident that an opthal choice of C’s is 

q(L) = [f+!T ‘) - lB,(Lhr(L) - ‘I+ y(L). (3.42) 

Using this optimal choice of c’s will result in an estimator that is 
asymptotically equivalent to an estimator constructed using the WT’s given 
in (3.31). Eq. (3.,42) turns out to provide the solution to an optimal prediction 
problem. Using the Wiener-Kohnogorov prediction formula we can verify 
that 

(3.43) 

Thus, if we first filter the eqs. (2.281, (2.29) and (2.30) forward to remove serial 
correlation and then project the partial derivatives onto the set of 
instrumental variables Gt, we can obtain an optimal set of instruments to use 
in estimation. This result is consistent with more cc,nventional instrumental 

24Hayashi and Sims (19!12) provide the interpretation given ‘below of the optimal weighting 
.scheme, but they do not eq!icitly characterize it. Rather than discussing how to construct 
optimal extimators, Hay&i a& Sims illustrate that by driving the number of orthogonality 
conditions to infmity, the asymptotic covariance matrices of the estimators approach a limiting 
covariance matrix lie (3.35). 
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variables estimators. 25 The application of the forward filter ic(L- I)- I, 
however, requires the solution of a non-trivial prediction problem (3.43) to 

n an optimal estimator which is essentially the same computation as is 
in ~lc~~~i~g IV”. 

In this section we examine three alternative instrumental variables 
s for estimating the parameters of dynamic quadratic objective 

‘~9 of ~~nomic agents. The first method is one proposed by Kennan 
and Wayashi (1980) that z&ma~es the parameters directly from the 

toler equations implied by the optimization problems of economic agents. 
nd method is one proposed by Hansen and Sargent (1980) that 

the Euler equations, exploits the s;:mmetry between th.e feedforward 
k portions of this solution, and imposes restrictions across the 
portion of the solution and the sto&stic specification of the 

able furcing variables. It turns out that this second method ignores 
r&ions across the feedback part of the ssbution and the stochastic 
on of the observable forcing variables. For this reason we consider 

a third metllod that imposes all of these restrictions. While the first method 
is computationally simple and requires that less be said about the economic 

viro~~t a priori, it also ignores restrictions and consequently results in 
rameter estimators that are asymptotically less efficient than the estimators 
t emerge from the second and third methods. 

The prongs made in section 3 about e&mating the parameters of the 
on model can be modified in a straightforward way to 

te any of the three methods. For this reason, we will not say very 
t estimation here, but instead we wilI describe the restrictions used 
the methods. To accomplish this, it is convenient to shift from the 

umption function example used in sections one and two to the factor 
a& example mentioned in the introduction. 

and Sargent (1980) we assume that a competitive firm 
factor of production chooses a contingency plan for the 
its expecte4l present value 

(4.1) 

n_, given, where r~, is employment of the factor at time t, yt is +Lhe 
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real factor rental at t, and a, is the time t technology shock observed by the 
firm but not by the econometrician.‘. 6 Here E and 6 are positive parameters. 
As in section 2, assume that there is a @x I) vector X, that is included in 
agents’ time period t information set in, and that satisfies 

@4$-j1=4 (4.2) 

j@. Again, a has mean zero but can be serially correlated. The random 
variable a, can be correlated with yt and future x’s and still satisfy (4.2). 

I’he stochastic Euler equation for opti~~on problem (4.1) is 

(4*3) 

where 

b3 = l/qk2’ (4.4) 

Foflowing a suggestion of McCalhnn (1976), we can add II,+ 1 - En, + 1 1 fZ, to 
both sides of (4.3) to obtain 

~,,l+~l~,+~~~r-l=~3Yr--3~t+~,,, --&+I p: (4.5) 

Associated with (4.5) is the orthogonality condition 

j20. Orthogonality condition (4.6) is implied by condition (4.2) and the 
assmp.tion that X, is-an element of Sz,. 

The E&r equation approach suggested by Mennan (1979) and Hayashi 
(1980) applied to this example entails constructing estimators of CT~, g2 and 
c3 from the orthogonality condition (4.Q. Estimators of 6, E, and fl can then 
be obtained from the estimators of (‘rl, (r2, and (TV by using the three 
equations in (4.4). An advantage of ~IU. ‘+ procedure 4s that closed fqrm 
expressions can be obtained for the estimators of S, E, aad fi, and that 
numerical search procedures are not required to eafcufate the parameter 



~thou~ this method does not require that the projections of 
and yt onto the reduced information set @,= {x,, x,_ 1,. . v> be 
it does implicitly assume that such projections are time 
akrna&ive two methods parameterize these projections ‘and 

restrktiiens across them. Notice that the Kennan-Hayashi 
<ator based ou (4.$1 ignores the transversality condition, which is among 

necessary conditions for the optimum problem. The alternative 
incorporate the restrictions imp&d by the transversahty 

characterize thw alternative methods of est:imation. As in 
me that 

(4.10) 

for&O. Following Hansen and Sargent (1980), we solve the Euler equation, 
to tk transversal&y condition, to obtain 

(4.11) 

e 

i. is fess than one and that decision rule (4.11) possesses a 
since 1 is the feedback coefficient and enters into the 
sum Using a strategy analogous to that -employed in 
(4.11) as 

=Aql --(.&a 
j=O 

r+jl @,-I-s,+a;r, 

(4.13) 
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where 

Solving the prediction problem In (4.13) we see that 

n, = In, _ 1 -t- n(L)x, + s, + a,*, 

(4.14) 

(4.15) 

where 

y(L)=I-Ly1(L).2g (4.16) 

Eq. (4.16) summarizes the restrictions across the feedforward part of the 
decision rule and the l.aw of motion for x. Using the definitions of s, and a: 
in (4.14) and an iterated projection argument we obtain the orthogonahty 
condition 

E[(S,+#)X,-j]=O (4.17) 

for jg 0. Thus n(L)x, is the projection of n,-- An,_ 1 onto the reduced 
information set @,. MIodifying a strategy proposed in Hansen and Sargent 
(1980), one can construct estimators of the underlying parameters 6, E, and ,O 
together with the parameters of 8 and y1 from the orthogonality conditions 
(4.9), (4. lo), and (4.11). 3o These estimators do not have closed form 
representations, and numerical search procedures are needed to compute 
them. 

Since the second method is computationally more difficult than the first 
method, it is important to ascertain whether additional restrictions are 
exploited by the second.method. To answer this question, observe from (4.5), 
(4.6), and (47) that the first method exploits the restrictions implied by 

E[(E l e rr1+ b&z, 19,-J = a&L)x,. (4.18) 

The operator (C1 + trl +a&) can be factored to obtain 

(L-lfa,+a,L)=(L_l-(l/AP))(l-AL), (4.19) 

*9This can be established using t a in A~~nd~x A of ansen and Sargent (1980). 
a.nsen and Sargent (198G) assume that yt is in #,. 



where R 4: 1. Thus, relation (4.18) can lx written 

E[(l -ALh+l 1 #$--(l/Ap)E[(l --AL)~J @,JzQ(L)Jc~. (4.20) 

En other words, one can interpret (4.18j as a- set -Of z%$tri&ori~ across thv;. 
projections uf (1 - 1L)n,+., and (1 -1L)n, onto Gg. That is, if we let 

then (4. I$) implies that 

S(L)--(l/A#?)x(Lj=a,8(Lj. (4.23) 

it tams out that given the pro&ctions of (1 - ALjn, and x,+ 1 onto Gt 
it Me to compute the projecticbn of (1 -rZLjn,+ i onto et, To see this 
*Wte that 

= n,x, + I+ 7cr’(Ljx,. 

Projecting cor~to @t we see that 

(4.24) 

ii(L)= 7&y’(L)+ X’(L). (4.26) 

le the fust method exploits only restrictions (4.1&j, it c;tnbe veriied that 
z&) in (4M) satisfies .both (4.18) and (4.26). Tfms the 
indeed impose more restrictions than, the first method. 

This ra&zs the question of whether there are any additional restrictions 
exploited in estimatiron; It. turp~ out that there aze.-.To see this 
the secod method works with the projection of the quasi- 

form (1 --A.&b, ozxto & butbes not. exploit the lirik between the 
of?& and ?&__a or&to !&. In patt&lar, let 

. . .,. 
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The second strategy uses the fact that 

q(L), -&j(L) = n(L), (4.28) 
,, 

where .rr(L).~ satisfies -(4.16). .Following the same logic as above, there exist 
additional. restrictions that link f(L) to r#J and r’(L). More precisely, note 
that 

(4.29) 

(4.30) 

Combking (4.28) and (4.30), we see that 

rj()y l(L) + q’(L) -- &- W(L) = a), (4.31) 

where n(L) is given in (4.16). Solving for the operator I’, it follows that 

Therefore 

rt(L)=rlo+W(U 

L&I W(L) -- 
==(K1~+(l--nL)’ 

(4.32) 

(4.33) 

An estimation method that impr;ses more restrictions than either of the 
two procedures mentioned previously is to estimate the projection equations 

: 
/’ %-I =tfw,+% (4.34) 

where 

Eu,x, -j = 0 
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for 12 Q, (C7), and (4.8) jointl,y subject to restrictions (4.16) and (4.33). The 
parameters to be estimated lmder this strategy are 8, 6, E, qo, and the 
parameters of O(L) and Y’(E).31 Projection (4.34) accommodates the 

lity thar the projection of at onto cirrrent, past and future X’S is two- 
If qO is not zero, it fohows from a theorem in Sims (1972) that the 
able forcing variables X, are not strictly exogenous in a regression of n, 

rrsnt and past X’S. Consistent with our previous proposals, this 
ure xzs the x’s as instruments but does not assume that the X’S are 

In comparing the three methods, we conclude that the Euler equation 
ach to estimating dynamic linear rational expectations models is 
ut~tionally simpler and requires that less be specified a priori. On the 

hand, it ignores restrictions and yields estimators that are 
tically less efbcient than estimators that exploit restrictions across 
sion rule parameters and the parameters of the stochastic process 

to generate the observable forcing variables. It is important to 
that even though the Euler equation approach does not require an 
&&astic speciGcation of the observable forcing variables, this does 

an the resulting instrumental variables estimators will be more robust 
terations in policy regimes that occur during the sample period. As 

previously, the Euler equation approach implicitly assumes that the 
tions of the variables onto the instruments have time invariant 

In b~iIding rational expectations eanometric models, a researcher is often 
ted with an estimation environment in which disturbance terms are 
correlated and instruments are not strictly exogenous. This paper 

a class of estimation procedures that are appropriate in this 
In this paper wkz have shown how to construct estimators from 

of orthogonality conditions implied by the econometric 
class of consistent and asymptotically normal estimators has 
A researcher can take into account the tradeoff between 

~~~~~ and the size of the asymptotic covariance matrix of 
ators h deciding whiclr of these procedures to employ. We 

constra&.d to have a denominator term (1 -AL). Thus 
Snitely many past x’s. As noted in footnoti: 22, an 
2) shows that pre-sample period x’s can be set to zero. 

5 is a bit of an overstatement. However, it is not clear that 
ions in policy regimes is accommodated by 
Ilows in Iris framework. 
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have also shown how to construct tests of the restrictions implied by the 
econometric model using these instrumental variables >r*ocedures. Although 
our econometric discussion took place mainly in the t ontext of a rational 
expectations, permanent income consumption function model, the estimators 
we propose are applicable to many other exam.ples of linear rational 
expectations models. 
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