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This paper illustrates how to use instrumental variables procedures to estimate the parameters
of a linear rational expectations model. These procedures are appropriate when disturbances are
serially correlated and the instrumental variables are not exogenous. We compare our procedures
to some alternative estimators that estimate free parameters from restrictions implied by the
Euler equations. The procedures are applicable to a variety of linear rational expectaiions
models, several sxampies of which we cite,

1. Introduction

In a variety of linear rational expectations models, agents’ decisions are
supposed -to. depend on-geometrically declining weighted sums of expected
future forcing variables’. These forcing variabies are typically described by
stochastic: processes that the agents view as being beyond their control. The
followmg are examples o such models
@ ‘Cagans model:i-. of por(foho balance Letting p, be the logarithm of the
s ;- ¥ be. the logarithm -of the money supply, and a, be a
v';-';istatmnaryr dxsturbance te portfolio balance, (agan’s model can be
. krepresented as

. Pr""'i":ab & 'a—':_'?) (yt+j"at+.i)lgt—la

‘ wheré E is the eXpeétaﬁons operator, Q, is agents’ information set at

' *Fumm ,;ayashx, Robert ] ok, Bennetf McCallbm, Dan Peled, Kenneth: Singleton, and
: Roben annsend provxded sote nel“us commems on-an earhcr draft. This research was

03%3923/82/0000—000@/&()2. ‘5 © 1982 North-Holland
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time ¢, and o <.0 is the slope of the portfolio balance schedule.!

(i) A dynamic model of demand for factors of production. Let n, be the
stock of a factor of production, y, be the real wage rate of the factor,
and a, be’' a random shock to technology. Thea a linear-quadratic
version of a costly adjustment model predicts that n, will obey

n=7An_, “%E[i (A'ﬁ)j(yt+j—at+j)‘9l]a
=0

where D<i<l, O0<f<1, 6>0, and £, is the firm’s information set at
time t. Here f is the firm’s discount factor, and 6 is a parameter
measuring the costs of adjustment.?

(iii} The permanent income model of consumption. Let c, be consumption, 4,
non-human assets, y, labor income, and g, ‘transitory consumption’.
Then the permanent income model of consumption can be written

¢ =—;~£—5{0A: +pE LZO (1+0) 7514 9:]} +a,

where p is the inferest rate and B is the marginal propensity to
consume.?

More examples of suck models in which the geometric sums
E(} % o Ay, ;182,) appear can be found in Sargent (1979) and Hansen and
Sargent (1981). As Hansen and Sargent (1981) show, such geometric sums are
importar.{ terms in a wide class of models that come from infinite horizon,
linear-quadratic stochastic optimum problems. In such moudels, it is common
to suppose that the values of the forcing variable y, are observable both to
the econometrician and the agent, but that only the agent observes the
forcing variable a,. The ‘hidden variable’ g, thus becomes one source of the
error in the equations fit by the econometrician [see Hansen and Sargent
{1980}]. Both the y and the a processes usually are modeled as being beyond
the zontrol of the private agent. The private agent is assumed to face these
processes as a ‘price taker’ or ‘income taker’. However, for standard
simultaneous equations reasons, this assumption does not imply that the y
process will be strictly econometrically exogenous with respect to the
decision variable. Indeed, the assumption that y is uncontrolled by the agent
does not even imply that y fails to be Granger caused by the private agents’
deasion variable. However, ir most of the fechnical literature published to

‘For furth.er exposition of this ezample, see Sargent (1977, 1979).
*Tris and refated examples are doscribed in Sargent (1979),
*For a description of this example, sce Hall (1978} and Sargent (1978).
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date,* estimaticn of lincar rational expectations models has been treated
either under the assumption that y is strictly exogenous, or under the weaker
assumptlon that y is not Granger-caused by the private agents’ decisicn
variable.’

The purpose of - the present paper is to describe optlmal estimation
procedures in:the: case in which y is not strictly exogenous, in which the
agents’ decision v>siable in general Granger-causes the forcing variable y and
in which full-biown maximum likelihood procedures are thought to be
undesirable or inapplicable. For applications, this is an important extension
to existing estimation procedures. Thus the theoretical presumption for each
of the examples given above is probably in favor of dynamic feedback from
market-wide measures of the decision variable on the left-hand side of the
equation to the y process on the right-hand side.S

This paper proposes estimators that can be interpreted as instrumental

variables estimators. The basic idea of this paper is to carry out identification
and estimation of the model’s free parameters from the projections of the
decision variables and the forcing variables on instruments, and the
projection-of the instruments on their own lagged values. These projections
are characterized by a set of cross-equation restrictions involving the free
parameters of the model, restrictions that are often stringent enough to
permit identification of the model’s free parameters. It is significant that the
instruments need not be strictly econometrically exogenous with respect to
the left-hand side or decision variables. It is even permitted that the decision
variables Granger-cause the instruments. Further, the disturbances in the
equation are permitted to be serially correlated, though the procedures do
not require the analyst explicitly to parameicrize the stochastic process for
the disturbances. Among other things, this paper helps clarify the
relationship between Granger causality and the criterion for appropriateness
of an instrument.
" There are two principal virtues of the instrumental-variables-t'/pe
estimators of the present paper vis-a-vis the maximum likelihood estimator
proposed, e.g., by Hansen and Sargent (1980). First, fewer parameters need to
be estimated simultaneously than are required with the maximum likelihood
estimator. Second, precise parameterizations of the .listurbances need not be
specified with the present estimators, while they must be with maximum
likelihood.

‘While the estimators described are applicable to a variety of linear raticnal
expeéctations models, we have chosen tc describe them by referring to our

“A few simple examples exist that use maximum likelihood estimaturs that explicitly take
account of feedback from the left-hand side variable to y,. For example, see Sargent (1977).

*For example, see Hansen and Sargent (1980).

5See Kydland and Prescott (1977) and Sargent { 1980) for discussions of how linear dynamic
«..ompeutlve equilibria can be calculated when theve is feedback from ma:ket-wide values or
agents” decision variables to prices or incomes that individual agents view as uncontrollable.
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third example, that of the permanent income consumption function. This
example is one in which the failure of y to be exogenous is weli known and
widely described in econometrics textbooks. It will be evident. how our
methods apply to other examples, including those given above.

We go on to compare our methods to some related methods proposed by
Keni:an (1979) and Hayashi (1980) that directly estimate Euler equations,
and thereby avoid dealing explicitly with geometrically declining sums of
expected future forcing variables. While many of the comments we make
about estimation carry over to these related methods, it turns out that these
other methods ignore theoretical restrictions and therefore sacrifice statistical
efficiency relative to the methods that we propose. It is convenient to make
this latter point in the context of the second example, a dynamic model of
demand for factors of production.

This paper is organized as follows. In section 2 we specify precisely a
version of the permanent income model: of corsumption and discuss- the
econometric restrictions iraplied by the model. We characterize the model by
projections in various directions that can be utilized econometrically. In
section 3 we propose some instrumental variables estimators of the
parameters of the model and discuss their large sample properties. We also
indicate how the estimator of Hayashi and Sims (1982) compares with the
optimal instrumental variables estimator. Section 4 contrasts our methods
with Euler equation methods proposed by Kennan (1979) and Hayashi (1980)
that do not work directly with geometrically declining sums of expected
futare forcing variables. Our conclusions are in section 5.

2. The statistical model

In this section we examine the restrictions which emerge Vf:romja permanenf
income model of consumption. We consider a linear model for consumption
of the form

Ct=ﬁyﬂ+at’ 2.1)

where ¢, is consumption at time ¢, g, is ‘traasitory consumption’ at ¢ and y,,
is permanent income at t. The econometrician is assumed not to have
observations on transitory consumption or -on permanent income.. We

and tanporanly focus on our \workmg deﬁmtlon of pcrmanent mcome We

= 15, p[f% + Z (1+p)” Etyt+,], (2.2)
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where p is the real interest rate assumed constant cver time, 4, is non-
human assets at time t, y, is after tax labor income at ¢,” and E{ j=E[‘|Q,]
is the mathematical expectation operator conditioned on a set of information
Q, available to private agents at time t.® Substituting (2.2) into (2.1) and
making explicit the information set 2, available to the consumer at ¢, gives

¢,=p(1- 5)[.«4, + 'Zo dEy, +j | .Q,] +a,, (2.3)
1= A

where d=(14+p) !. We assume that 2,5Q,_,5Q, ,...and that {y,
Veerree } Qs

To motivate definition (2.2) of permanent income, consider a setup in
which infinite lived consumers face the sequence of budgei constraints

Arp1 =1+ p)A,+(1+p)yc—c) t=toslpi1s-+=
A,, given’® (2.4

It is assumed that y is a stochastic process ‘which is beyond the control of
the consumer. Solving the stochastic difference eq. (2.4) forward and imposing
the terminal condition

lim (1+p)~¢*PE,A, ;=0 (2.5)

j— oo

gives the ‘realizable’ solution

= 1y = 1V |
jZO (““——1 i p) E:Cr+j=A,+jéo (—1—_—1—;) E,y,ﬂ-E W, (2.6)

where W, is the consumer’s total wealth, human and non-human. Eq. (2.6)
states that the expected present discounted value of consumption equals the

"There are some important empirical issues outstanding in the literature on cousumption that
relate to the definitions of 4, and y,. These issues include whether government bonds and social
insurance obligations should be included in non-human weaith, and how future *ax liabilities
required to service these claims should be treated.

81t is the presence of the transitory comsumption term that differentiates the consumption
model here from the one considered by Hall (1978). Hall's short-cat econometric procedure relies
critically on the absence of this transitory-consemption term [sce Flavin (1981)]. Our definition
of permagent income differs from that used by Sargent (1978) because of our inclusion of non-
human assets in our measure of permanant income.

91 we take {24) literally, it implies that a stochastic singularity exists in the joint (c,y, AY
process. We. assume that this singularity does not exist. Instead we implicitly assume that there
are shocks to this budget constraint which might take the form of unobservable (to the
econometrician) components of incosie.
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present value of non-human assets A4, plus the expected present dlscounted
value of labor income. FFor convemence, ‘write- (2 6) as e

Z yEtc¢+J-W At+z éfE‘y +ie o - (27)

]2

Notice that the constant level c,;;=¢, of planned consumptlon at t that
satisfies (2.5) is found from

ﬁt

a=u—-a)m=(1~-6>(A:+,Zo‘5"Ed"+f)

j
“'1—_;';;[ ++ 2( ) rYt«l-j]- 2.8)

According to one widely accepted definition, ¢, defined by (2.8) is the level of
permanent income: it is the rate at which the consumer expects to be able to
consume indefinitely given his current totz! wealth. Specification (2.2)
embodies this rotion of permanent income.!®

We procced to specify properties that we assume about transitory
consumptiion. The random process a is assumed to have. mean zero, but it
can be serially correlated. Further, it can be correlated with the y process.
Thus, we do not assume that y is econometrically exogenous in (2.%).
Obviously, however, to give content to (2.3) and to proceed w1th estimation,
some orthogonality conditions must be imposed on g, We assume that there
is a (p x I) vector x, that is included in £, satisfying

Eax,_;=0, 2.9)

jz0. It is important to note that g, is allowed to be correlated with future x’s

"“An alternative way to derive the model given in. 2.1)-and 2.2)i is to. foliow-Hall. (1 8):and
assume that a representative agent solves a ume-sepwabh ratis tio; lernt

wmammmm mposit he lifes udg ot
imposes (2.5). Under the assumption - the: subjective.
parameter § i greater than ons. Thetransﬂmyeonsumpﬂontermu
o ns of shocks to preferences and shoks to the budget constraint ( A): ' With these
% & model of the form ngen in (2.1 and (2.2) ‘can be obtained in: Whlch ‘all-of the
@hwvz&e{w the econometrician} are measured as devxatxons from nhexr uncor :imomal
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and therefore the x’s do not have to be econometrically exogenous with
respect to ¢.'! We define a reduced information set &,={x,, x,_,,... }. The idea
underlying our estimation strategy is to exploit the orthogonality conditions
(2.9) and, in a sense, to employ the x process as an instrument for y.

Now rewrite (2.3) as

_br 4,+-P°
I+p

Y (1+p)”jEy,+j{d§,+a,+s,, (2.10)

¢
‘ 1+p /=0

where the ‘error’ s, is given by'?

Bp & -
S,=-1_+_;~,-;0(1+p) j(Ey,HIQ,——EijI(D,). (2.11)

By counstruction the error s, is orthogonal to @,, since @, is included in Q,.
That is, by the law of iterated projections, we have!?

E(EYt+let"Eyt+jlQ:)'¢t2Eyt+j|Qx“EijI ?,=0.

In order to calculate the projection of permanent income onto the reduced
information set @,, we need to make some precise assumptions about the
forcing variables. We calculate this projection to obtain a set of cross-
equation restrictions that can be exploited in estimation. We make the
convenient assumption that (y,A4,x’,a,s) is a vector, covariance stationary,
linearly indeterministic stochastic process.! In what follows we assume that
conditional expectations and best linear predictors coincide. Alternatively, we
could abstain from this coincidence assumption and instead assume that
E[‘,]di,] denotes the linear least squarss projection operator onto the
information sct &,

Since x'is a covariance stationary, linearly indeterministic stochastic

19p fact, ¢ would in general Granger-cause x even if (2.9) were extended to hold for all j, and not
just j=0.

12The idea of replacing the information set €, with a subset @,, thereby adding an error term
like s,, was suggested by Shiller (1972) in his study of the term struct.re of interest rates, and was
exploited in a related context by Hansen and Sargent (1980).

“3The Jaw of interated projections states that E{y|x)=E(Ey|x,z)|x), where y,x,z are random
variables and E is either the mathematical expectation or the linear least squares projection

‘operator. , -

pf‘SeE Rozanov (1967) for a definition of covariance stationary, linearly indeterministic. In
formally verifying the large sample properties of the estimators we propose in the next section,
“Hansen (1980) ‘strengthiens this assumpfion to require strict stationarity. In order for these
stationarity assumptions to be consistent with the budget constraint (24), it is necessary to
restrict B to be greater than one. In the discussion which follows, al! variables will be viewed as

deviations from their unconditional means.
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process, it has a Wold vector moving average representation

Xee1=0fL)ers g, (2.12)

where o(L}=1+a,L+ ...and where

et+n=xt+1‘"E[xt+1l¢t]' (2.13)
We add the additional restrictions that

€O

Y. [trace ¢jaj* < + o0 (2.14)

j=o0
and that the function F is bounded away from zero where

Flo)=det [ae®)ale)]. | 2.15)

The symbol ' denotes both transposition and conjugation. Among other
things these assumptions are -ufficient to imply that there exists a one-sided
opsrator y==a~! or ¢quivalenily that x has an autoregressive representation

L)X 41 =64 15 , (2.16)

where {(L)=1—7y,L— .... The dimension of e is (p x 1) while a and y are both
(pxp)t?
We write the projection of y, on @, as

Ey,| @, =6(L),, e
where 6(L)=80+8,L+ ... That is, Wé have the otthogoﬁal dééoinposition |

y=0(L)x,+u, (2.18)
where Eu,>,_;=0 for j=0. Substituting(Z.lZ) in’;o 1(2.18), wé obtain

Y=Ly Lje, +u,. - | o | (2-}9)

Now let the after tax labor income variable whose for

t appears in (23)

5"V zre o assuming that the covariance matrix of ¢ has full rank.
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be denoted
© . ®© 1
74 Ej;o(l +0) 734 j=,-;20 &yir = [.1—_5—1;7])’:’ (2.20)

recalling that 6=(1+ p)~ 1. Substituting (2.19) into (2.20) gives

O(L)(L) 1
yE= e+ u,.
SO W T S B s

(2.21)

Idote that u,, ; for Jj>0 is orthogonal to the information set @,={x,, x,_;,...}
by virtue of the orthogonality conditions Eux,_;=0 for j=0. We use the
Wiener-K olmogorov prediction formula to compute

e(L)(fo)

Ey¥l D= ————| ¢, 222
ytl t [1—514 1]+l ( )

where [ ], is the ‘annihilation operator’ that instructs us to ignore negative
powers of L.1® That is,

Using the lemma in Appendix A of Hansen and Sargent (1980) to evaluate
the above term in [ ], we obtain

e [ — 8L 10)u(d)
Ey;'=|<1>,_.[, 3T ]e,. (2.23)

Sinéé o{L)e,=x, and o~ ! =y, eq. (2.23) can be written in the equivalent form

S
(L) Mi _0;}54)-'?56) v(L)]xr (2.24)

E}’ﬂ¢:=[

Substituting (2.20) and (2.24) into (2.10) gives the equation

_Bo , . Br O(L)— L™ *0(8)7(0)~ "y(L)
T14p T 14p 1--6L1

¢, ]x, +a,+ 5,

(2.25)

‘15Q¢e Whittle (1963) for derivation of the formula and examples showing its usefulness.
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Repeating (2.18) and 2.16), we also have the projection equations
Ye=L)x,+u,, (2.26)
Xeor =7+ e, (227)

where yH{Lj=7, +7.L+....

As is the hallmark of dynamic rational expectations models, egs. (2.25),
{2.26), and (2.27) possess a set of cross-equation restrictions, indicated by the
presence of the parameters of the lag operators « and 6 in (225). The
presence of these parameters reflects that consumers are making use of the
properties of the y process in forming estimates of their permanent income.
The existence of these cross-equation resirictions can be used to identify and
estimate the parameters of the operators y and @ and the parameters f§ and p.
K.y clements in the modei are the following three sets of orthogonality
conditions:

Ex,. ja,+s)=0, (2.28)
Ex,_ u,=0, (2.29)
Ex,_#.,=0 (2.30)

for j=0. Recall that :;, is a {p x 1) random vector, so that Ex,_{a,+s,) and
Ex,. ju, are (p x 1) vectors, while Ex,_ £, is a (p X p) matrix.

The orthogonality conditicus (2.29) and (2.30) stem directly from the
construction of (2.26) and (2.27) as projection equations. In other words,
{2.26) was constructed by projecting y, onto @, and (2.27) by projecting X,
onto &, These orthogonality conditions emerge from the ‘orthogonality
principle’ which states that forecast errors associated with best linear
predictors must be orthogonal to all random variables in the information set
used ip constructing the forecast. The orthogonality condition (2.28) stems
jointly from the definition (2.11) of s, together with the assumption that
Ex,_a,=0 for j=20. Orthogonality condition (2.28) states that the projection
of ¢,— BpA /(14 p)onte @, is

; (L}— 8L 16{8}(8) 1
Iifp {Bi ) 1 __6;?5 ) Y(L)]x::,ﬂ(la)xt {2.31)

and thus we can view (2.28) as a projection equai.on also.
The exonometric model to be estimated consists of the three sets of egs.
(2.25), (2.26) and (2.27). One may be tempted to think of these as reduced
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form equations since they define the projection of c,—ppA,/(1+p),y, and
x,+; onto &,. However, this interpretation is not quite correct. The random
variable ¢,—fpA,/(1+p) is not observable to the econometrician since it
involves the unknown parameters § and p. In the absence of knowledge of B,
p and the cross-equation restrictions, eq. (2.25) is not well defined as a
reduced form equation. More plausible candidates for the reduced form
equations for our model, are the nrojections of ¢, 4;, ¥, and x,,, onto @,
Since all of these variables are assumed to be observable, the coefficients of
their projections onto the cobservable information set can be automatically
identified. In fact eqs. (2.26) and {2.27) are such orojections. Therefore, the
parameters ;, 7s,...0p 0p,..., are identitied.!” Identification of the
remaining structural parameters, f and p, could be cast in the conventional
terms of whether they can be inferred from the reduced form coefficients of
the projections of ¢,, 4,, y, and x,,, onto P, It turns out that we do not
have to estimate all of the restricted reduced form projection equations
simultaneously to achieve identification of the structural parameters. For this
reason we will address the issue of identification of § and p in terms of the
orthogonality condition (2.28) using the fact that the parameters of y and @
are identified.

Suppose that * and p* allow orthogonality condition (2.28) and the cross-
equation restrictions to be satisfied. Let

1
¥ 2.32
T 232
3% %
s _ P B* (2.33)
1+p 14+p*

n*(L)=

Bp* [ 6(L)—6* L™ 8(5*)y(0*)” "y(L)
1+p*| 1—6%L! '

175t is a well-known result from linear prediction theory that the orthogonality conditions
(2.29) and (2.30) uniquely define elements v, @, and w, &P, such that

VeV =U, Xp1 — W =€y
The parameters of y* and 0 given in (2.26) and (2.27) are identified as long as the lag operators
are.not over parameierized in the semse that if y'* and 6* correspond to a vector in the
admissible parameter space other than the true parameter vector, then

B(L)*x: #60(L)x,=v, VI(L)*x: Fy 1(\L)x: =W
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We can write

po* e N
— =, —-n*4
G 1+ p A 1+ pA T2
B .
= * 1A, 2.35
Suppose the projection of A, onto @, is given by
A=L)x,+v, {2.36)
where
Ex,_w,=0 (2.37)

for j=0 and EL)=&o+ &L+ ..., where ¢; is (1 x p) for j=0.'®
Substituting (2.25), (2.31) and (2.36) inte (2.35), we obtain

t
C— lﬁ +P < Ac=[nL)—2*{L))x, —n*v,+5,+a,
=n*(L)x,+s¥ +af, (2.38)
**The iden:ification and estimation strategy being discussed is a limited information one since

it does not take into account the restrictions implied by the budget conmstraint (Z4). If we
introduce a shiock to this constraint that is orthogonal to @, and project both sides of (2.4) onto
&, we obtain

E[Az+1§¢l] (1 +p)E[A, 1¢ 7+(1+p)E[."z!¢:] (4 +P)E[('t[¢t]

This equation imposes consiraints on &(L}. Using the procedures described in section 4, it can be
verified that

ol L1 +p)&L)—=(L)]
{1—AL) (1-4L) ’

)=

where 4A=1-+{1 - Bjp and & is 3 (1 x p} vector of parameters. Imposing these restrictions implies
the proiection equation:

Bo [o+8(010)"]
1-p i—AL AL

Elc,|#]=

Estimating the projections of ¢, 4,, ¥, and x,., onto ¢, subject to the restrictions: given-above
tmposes more information than the strategy illustrated in the paper. The estimators which we
propose in section 3 can be modified in a straighforward way to accommodate these
extra regtrictions.
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where s} +a satisfies orthogonality condition (2.28). Projecting (2.38) onto
&,, we obtain

w¥(L)x, = [a(L)—n*&(L)]x, (2.39)

or

n*&(L)x, =[n(L)—n*(L)]x, (2.40)

for n* and n* given by (2.33) and (2.24), respectively. In order for our model -
to be identified, we assume that & is not of the form (2.40) for any admissible
cheoice of #* and p*. This assumption seems innocuous since it is ruling out
only singular or very special structures in ¢ and n. We conclude that all of
the parameters of our model are identified via the cross-equation restrictions
and the orthegonality conditions (2.28), (2.29) and (2.30).

We now proceed to discuss issues that emerge in estimating the model
parameters. We begin by indicating that estimators such as generalized least
squares and versions of maximum likelihood are not easily applicable to
estimating (2.25), (2.26) and (2.27). Maximum likelihood estimation requires
that more auxiliary assumpiions be made about the temporal covariances of
(s+a),u,A,y. and x than have been made above. Notice that the preceding
construction in general produces (s+a) and u processes that are serially
correlated. Furthermore, the nature of the s process in general depends on
the time series properties of elements in the broad information set €, which
private agents are permitted to see but which the econometrician has not
necessarily been assumed to see. In addition, in neither (2.25) nor (2.26) are
x’s strictly econometrically exogenous. That is, in general the disturbances
are correlated with future values of the x’s. This implies that attempts to
‘correct’ for serial correlation in the disturbances via the implicit use of filters
as occurs in time series versions of generalized least squares will result in
estimators that are statistically inconsistent. The reason for this is that simply
filtering (2.25) and (2.26) will distort the orthogonality conditions required for
consistency, since the x’s are not strictly exogenous.

It is of some interest to note that not only do the x’s fail to be strictly
econometricaliy exogenous in (2.25), but also in general ¢ will Granger-cavse
x. That is, given lagged x’s, lagged ¢’s will help to predict x,. This is 50 in
spite of the orthogonality conditions (2.28), (2.29) and (2.30). In general,
s, and a, are both correlated with future x’s so that ¢, contains information
that marginally helps to predict future x’s. The upshot of these remarks is
that in the present context, failing a Granger-Sims test for the null
hypothesis that c fails to Granger cause x does not necessarily signal model
misspecification; in particular, it has no bearing on whether or not the
orthogonality condition (2.28) 15 appropriate.
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It is also worth mentioning that from the point of view of extracting good
estimates of the ‘structural’ parameters f and p, it is not appropriate to
scarch for a specification of x, (or @,) that predicts yf as well as possible.
Given two specifications for ®,={x,,x,_y,...}, the one that minimizes E(y}
— Ey¥| ®)* =07, is not necessarily to be preferred. The reason is that for
extracting consistent estimates of the structural parameters, the orthogonality
conditicns Ex,_ {a,+5,)=0, j20, are relied upon. The value of the prediction
error variance o2, has no bearing on which of the two competing
specificztions for &, more nearly satisfies the orthogenality conditions (2.28).
Indeed, the motivation of the procedures in this paper is the presumption
that current and lagged values of y itself perhaps should be excluded from &,
because such a specification would violate (2.28). This is true in spite of the
presumption that including lagged y’s in &, would usually decrease the
prediction error variance.

In conclusion, in this section we have derived a statistical model of the
consumption function and have shown how orthogonality conditions (2.28),
(2.29) and (2.30) can be used to identify the free parameters of (2.25), (2.26)
and (2.27). We have vet to suggest estimation procedures other than to
indicate that asymptotically efficient estimation requires something different
frcmn the serial correlation corrections implicit in time series versions of
gereralized least squares. In the next section we discuss some correct
procedures for estimating the parameters of the model. The first procedure
we discuss involves estimating the parameters by using method of moments
estimators and choosing admissible parameter values that minimize a
weighted average of a specified number of the sample counterparts of the
population orthogonality conditions (2.28), (2.29) and (2.30). The weighting
scheme is chosen with a view to achieving the minimum asymptotic
covariance matrix for estimators that exploit the same fixed set orthogonality
conditions. We describe the details involved in executing this estimation
strategy. In turns out that these ‘generalized method of moments (GMM)
estimators are not asymptotically as efficient as maximum likelihood,
althcugh they are computationally more convenient and, in a sense, more
robust. The GMM estimators described above use only a fixed finite number
of orthogonality conditions independent of sample size. For this reason, we
aiso investigate the question of how to use all of the available orthogonality
conditions, which are infinite in number.

3. Construction of cousistent GMM estimators -
3.1. Estimators using a fixed number of ’orthogyomilgty conditions

This section indicates in some detail how to construct consistent GMM
estimators described by Hansen {1982 and Hansen and Sargent (1980) to
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estimate the parameters of the model specified in (2.25)42.30). We begin by
imposing finite parameterizations for the operators y and 6. In particular, we
assume that y(L)=1I—yL—...—,I% and L)=0,+6,L+...+0,L. By virtue
of the covariance stationarity assumption, the zeroes of det y(z) lie outside
the circle. For the purpose of this exposition, we shall set r=g~ 1, although
it will be evide~* how the estimation procedure is to be modified if g—1+r.
Performing a series of calculations similar to those applied by Hansen and
Sargent (1980) in a different context, it is possible to derive explicitly the
coefiicients of the polynomial in Lthat appears in (2.24). For convenience, let
us define that polynomial as y(L)=3"_, ¥, so that

O(L)— 0L 0(8)y(6)~ 'y(L)
Y(L)= [ e . (3.1)
It can be shown that
Yo=0(61(0)"",
¥ ;=00(0)y(d)” 1()’j+ 10742+ F O )
+(0;4080;,,+...+878), j=1,...,r. (3.2)

The expressions in (3.2) provide us with a convenient explicit represeniation
for the restrictions across the parameters of (2.25), (2.26), and (2.27).

Solving (2.25), (2.26), and (2.27) for (a,+s,), u,, and e,,, and substituting
into the population orthogonality condiions (2.28), (2.29), and (2.30),
respectively, gives

ﬁp
" - 0, 3.3)
Exl—‘t(ct 1+p t 1+p}z lll_]xt -J (

v \ §
Ex,_{y— Y ij,_j)zu, (3.4)

i=0

Ext—'c(x;+1 o Zox;—j?}+ 1)=0 (3.5)

for t=0,1,...,P, where P is the number of lagged x’s used in the
orthogorality conditions. Denote by z the vector of observables
(Cpp Ay %yy). Let the free parameters of the model B, p, yi o w¥rsis
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b,....,8, be denotzd by the Q dimensional vector {o. Let

s,+ay |
d,= y =ML; o)z, (3.6)

€41

where AL; {o)=Ao{lo)+A:(Lol+... + 4,4 1o,

1 £
1+p

JolCo)= k o 1ol

0 0 01
37)
000 ”%Am
Aflo)= 000 - , i=1..,r+1
000 -y

znd the y’s are defined in (3.2). The parameters of A(L;.) depend on the
parameters [, via the cross-equation restrictions exhibited in (2.25), (2.26),
{2.27), 3.1) and (3.2). It is convenient to have notation for the functions of the
data and the parameters whose mathematical expectations are zero according
to the orthogonaiiiy conditions (2.28), (2.29), and (2.30). So we deﬁne the

vector function

S =ML;0)z,® . N (3.8)

where ‘@’ denotes the Kronecker product and where { is an element in the
admissible parameter space containing the true parameter vector (.
Expression (3.8) defines f({,) as a p(P+1}p+2)=R vector of random
variables whose expected values are restricted to be zero by 13:3), (3.4) and
(3.5). The content of the theory in (2. 28), (2 29) and (2 30) can now be
succinctly stated as E[ f{{o)]=0. i

SQW the investigator has a sample of observa f” s on z, fcr t=—P
+1..... 7. Then for each parameter { in the admass1b1e parameter spaoe, one
can view
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1 T
| ?l‘,;lﬁ@)':?'m (3.9)

as an estimator Ef((). Since Ef((o)=0, we can think of estimating {, by
finding the element { in the parameter space that makes g{{) small in some
sense. To be more precise, we choose a ‘distance’ or weighting matrix S that is
R by R and positive definite, and let {,; be a minimizer of

J(S8,0)=g(yS ™ 'g(0). (3.10)

We will describe appropriate procedures for selecting thc distance matrix
shortly.

For a given value of the matrix S, muimizing (3.10) is a standard non-
linear minimization problem. In practice, an ‘acceptable gradient’ method
could be used to minimize (3.10) with respect to {.!° From the viewpoint of
this minimization, formulz (3.2) is a great help, since it explicitly characterizes
the complicated cross-equation restrictions that are embedded in A(L; -). This
means that hill-ciimbing methods using analytical gradients of (3.10) are
feasible. Also g4({) can be expressed in terms of

1 T T o
'7_{}'0(0 Zl zt®xt—j+' . +Ar+ 1(C) Zl S 1®xt—j] (3] 1)
t= t=
for j=0,..., P. Thus, the vectors of sample moments

1 X n
TIZtZl Zs -k @X - (3.12)

for j=0,...,P and k=0,...,r need only be computed once and stored in the
numerical minimization of (3.10).

The estimator described above is of the same form as the nonlinear
instrumental variables estimators considered by Amemiya (1974, 1977) and
Jorgenson and Laffont (1974). However, the results from those papers do not
apply to the estimation environment considered in this paper because in our
model disturbance terms are possibly serially correlated and instruments are
not necessarily strictly exogenous. Hansen (1982) provides a treatment of the
large sample properties of GMM estimators under regularity conditions that
allow for serially correlated disturbances and instruments that are not strictiy
exogenous. He establishes the consistency and asymptotic normality of
estimators in a class that includes the estimators considered in this paper. It
turns out that the asymptotic covariance matrix is dependent on the choice

9Gee Bard (1974) for a description of such methods.
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of distance matrix 5. However, it is possible to determine an optimal choice
of § that will yicld an estimator with the smallest asymptotic covariance
matrix among the class of estimators that use the same set of orthogonality
conditions. Hansen demonstrates that the optimal choice of S is given by

+

Si= % R (313

j o

where

R, ‘)= E[fi{lo)fi- ALo)].

Note that S, is the spectral density matrix of the random vector j({o) at
frequency zero. Under the more special assumptions that the z process is
Gaussian or is a stationary process whose fourth-order cumulants are zero,
S, has an alternative representation

+

Sy= 3 RAIORL)

_f S{— )@ (w)do, (3.14)

RYj)=E i [xi_ i Xi_; Xi_i-pl (3.15)
X : M-l M —j-Pl e

xr—PJ
4+ ¥

SHo)= Y <REy),

R4)=E[dd._j},

+ o

Sdoy= Y e RLj).

j=-®

I we et

RAjy=Efxx_],

+om

Sdj= Y €@R(j) (3.16)

j=~w
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then 1t follows that

[ S(w) ¢oS(w) ... ePS(w) |
e S (w) S.(w) ... eP-lag ()
e~ o5 (0) e~ ®- oS () ...  S(w)

- : (3.17)

There are some cases in which a researcher may wish to avoid making
assumptions that justify using the representation of S, given in (3.14). For
instance, consider situations in which conditional expectations and best
linear predictors do not coincide. A researcher may wish to assume that the
projection eqs. (2.26) and (2.27) define the linear least squares projections of
¥, and x,,, onto &,, but avoid making the claim that these equations define
the conditional expectations of y, and x,,, given current and past x’s. In
such situations unless fourth-order cumulants are zero, the representation of
Sy given in (3.14) is inappropriate aud representation (3.13) should be used.

Obviously, S, is not a matrix that the researcher can specify correctly a
priori. In order to obtain an estimator that is optimal in the sense described
above, it is only required that S, be estimated consistently. This can be
accomplished by using an initial consistent estimator [; ,, forming the
sample values f{{r,,) or (L;{r )z, and then estimating 5, using a procedure
appropriate for estimating spectral density matrices consistently employing
either formula (3.13) or formula (3.14). With this estimator of §;, which we
denote ST, for the distance matrix, we can obtai» &n optimal estimator of {,
by minimizing J(ST,{) by choice of {. We denc:.: this mipimizer by {; ,. A
consistent estimator of the asymptotic covariance matrix for { , is

[D'»,-(S})—IDT]~1, (3.18)

where
_1 & ly2) 3.19
Dr= Tt:L:l i (3.19)

The initial consistent estimator {; ; can be obtained by minimizing J(S, ")
using a non-optimal choice for S, e.g., the identity matrix.

This estimatior. procedure uses R orthogonality conditions to estimaie
parameters. For riost applications R is greater than Q. Estimation of the @
parameters in essence sets Q linear combinations of the sample orthogonality
conditions to zero, via the first-order conditions for (3.10). This leaves R—Q
independent linear combinations of the orthogoenality conditions that are not
set to zero in estimation but that should be ‘close t» zerc’ if the restrictions
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implied by the model are true. This provices us with a scheme for testing
these restuctions. Hansen (1982) shows that TJ(S},(; ,) is asymptotically
distributed as a chi sguare with R—Q degrees of freedom under the null
hypothesis that the restrictions are true. Since J(S},{r ) is the minimized
value of the criterion function J(37, ) for tYie second step optimal estimator,
this st statistic can be computed easily.

The estimation scheme described above does exploit the seriai correlation
properties of the disturbances to construct an optimal estimator; however, a
r-searcher is free to adopt a relatively gencral specification of the temporal
covariances of these disturbances. This is an important advantage of this
procedure over maximum likelihood procedures. Maximum likelihood
requires a more precise specification of the temporal covariance structure of
the instrumental variables and disturbances. There is an additional
computational advantage in that one can estimate the parameters f, p, 8,
and 7 by numerically searching over a smaller parameter space using this
instrumental variakics procedure than is required by maximum likelihood
procedures.

3.2. Estimators using all available orthogonality conditions

In constructing the GMM estimators described above, a fixed number R of
orthogonality conditions was employed independent of sample size. On the
other hand, there is an infinite number of orthogonality conditions available
tc use in estimnation, as is indicated by (2.28), (2.29) and (2.30). While the
GMM estimators described above use the R orthogonality conditions
optimzlly, the only justification for restricting attention to these
orthogonality conditions is computational simplicity. Typically by adding
addition:al orthogonality conditions to the list used in estimation, it is
possidle to construct an estimator with a smaller asymptotic covariance
matrix. For this reason we now discuss how to use all available
orthogonality conditions ‘optimally’. This discussion takes place under the
special assumptions that were used to justify representation (3.14) of S ..

Let W, be an (nx p) matrix lag operator for j=1,2,...,Q, where n= p+2.
We impose the restriction that W, be one-sided for each j, that is,

WAL)=Wo+WiL+.... (3.20)

Furthermore, assume that the elements of {W*}2., are square summable for
each j. We can think of estimating (,, from the Q orthogonality conditions

E4TW(L)x,]1=0 (3.21)

for j=1,2,...,0. These orthogonality conditions are implied by the
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orthogonality conditions (2.28), (2.29) and (2.30). We can write

dLW{L)x ] =d [Wj(L)x,]+ 7, [W;y(L)x,]

+or A d [ WD), ) (3.22)

where dy, is the kth element of d, and W, is the kth rf"“w of W,. Let us stack
the ‘weighting’ lag operators W), into a matrix Was foilows:

W(L)=[Wy(L)], (3.23)

ie, W(L) is a partitioned matrix polynomial in the lag operator with W;,(L)
in the jth row and kth column partition. Note that W(L) is (Q x N) where
N =pn.

In order to estimate (, using W, we can think of finding {; in some
admissible parameter space that satisfies the non-linear equations

1 T
j; [ML; {2z T W{L)x, =0 (3.24)

for j=1,2,...,0. Recall that d,=A(L;{,)z, so that (3.24) is just a sample
version of (3.21). Practically speaking, there are difficulties in implementing
this strategy. The lag polynomial W is allowed to be an infiniie order
polynomial and thus (3.24) may involve observations that are not available.
Criterion function (3.24) can be approximated by letting x be equal to zero
for all time periods in which observations are not available. It turns out that
this has a negligible impact on the asymptotic distribution of the estimator.
Hansen and Singleton (1982) establish consistency and asymptotic normality
of estimators of the form specified in (3.24) with relatively arbitrary choices
for W. As is true for the finite orthogonality ccndition case, the asymptotic
covariance matrix of the estimator is dependent on the choice of the
weighting operator W, Our purpose here is to describe the cptimal choice of
W and suggest ways to construct optimal estimators in practice.

Before representing an optimal estimator, we provide an expression for the
asymptotic covariance matrix of an estimator that uses a relatively arbitrary
choice of W. Let D[W] be the (¢ x ) matrix given by

ML o)
74 i

OAL;
w0y CO) . (325)

[Wi(L)x, )

I
=

Diw]

OML;Co) |
[WQI” t]f (CO z-J
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We restrict our attenticn to choices of W for which D{W] is non-singular.?®
Assume thiat S, can be represented as

S{—w)= k(e k(e, (3.26)
where
Ko™ = ﬁ £, (3.27)
i [trace (kx)TE < + o,
j=o
detx(z)#0, |7J<1.
We let

S(W)=2—ln- j WE)[SA— )@ S f])W(e") do (3.28)

Hansen and Singleton demonstrate that the asymptotic covariance matrix of
an estimator using weighting scheme Wis given by

D(W)™ 'S(W)D(W)~"". | 3.29)

In order to obtain an optimal choice of W, we can minimize (3.29) by choice
of a one-sided matrix lag operator W, Hansen and Singleton solve this
optimization problemm and obtains an explicit characterization of the
solution. The one-sided constraint on W is imposed because we do not
assume that the instruments are strictly exogenous. This constramt is, in
general, binding.

To obtain an explicit solution to this optumzatxon problem, let

E[—-‘li—ac-c—"lz,l @}[Bl-(mx,sz(mx, .. BoD)x]. (330)
The optimal weighting lag operator 1#/* is given by

WHL)=x(L) "[K(L™")” iB,{L)v(L)”‘]ﬂ(L) (3.31)
for j=1,...,0. The optimal weighting scheme is dependent on the serial

correlation properties of the disturbance via «,. the serial correlation
properties of the instruments via 7, and the ps o;ec‘lon given ln 13.30) via B,

¥ phernatively, we could avoid imposing this restriction, and whenever D{W] is singular,
interpret the asymptotic covariznoe matrix of the estimator as infinite.
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The asymptotic covariance matrix of this optimal estimator is provided
below. Let

(B
D=L B, = |40 (332
H,{L)
for j=1,2,...,0, where H(L) is (1 x p). Let i
H(L)=[H(L)]. | (3.33)

The asymptotic covariance matrix of an optimal estimator is given by
1 = . -1
[ﬂ | HE“)[I® ViHie'y dw] =D(W*)"1=§(W*~ !, (3.39)

where V=E[ee].

In order to conmstruct an optimal estimator, it is necessary to have
consistent estimators of W*, or equivalently consistent estimators of x, y and
B; for j=1,2,...,0*' To accomplish this, the fixed, finite orthogonality
condition GMM procedure discussed earlier can be used to obtain a
consistent estimator {; ;. Using this estimator, estimated disturbances

d, r=ML;{1,1)z, (3.35)°

can be formed for i=1,2,...,T These disturbances- can in turn be used to
estimate the parameters of x. One practical strategy is to estimate x by
running a finite order forward vector autoregression. A key point is that
these estimators are constructed so that misspecification of the serial
correlation properties of d does not damage consistency but only the
optimality of the resulting estimztor. To achieve optimality, the choice of
order of this vector autoregression should be an explicit function of sample
size in cases in which d is aliowed to have an infinite order vector
autoregression representation. Hansen and Singleton (1982) discuss this issue.

A consistent estimator of y is embedded in {, r since a subset of the
parameters of {, are the parameters of y. Estimates of B; for i=1,...,Q can
be obtained from {; ; and estimates of { where

21y general K and B, for j=1,2,...,Q are infinite order lag polynomials. The sense in which
the coefficients of these Iag polynmmals have to be consistently estimated is discussed in Hansen
and Singleton (1982).
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E[A,|#.]=&(L)x.. (3.36)

One possibility is to estimate { with a finite lag approximation using
ordinary least squares. The Iag length could be treated as fixed a priori or as
an explicit function of sample size. A second strategy is to estimate

A,=EL)x, 40, - (3.37)

jointly with (2.25), (2.26), and (227).22 Eq. (3.37) has the associated
orthogonality condition

E[vx,_ =0, (3.38)

720. The computational advantage of using the procedures we propose over
maximum likelihood is that the parameters of x are rot estimated
simultaneously with the rest of the parameters of the model?® Our
procedures carn: avoid estimating x altogether or in cases in which asymptotic
optimality is desired, initial consistent estimators of the parameters of x are
employed.

Before concludmg this section, 1t is useful to compare the estimators we
are proposing with estimators suggested by Hayashi and Sims (1982). It turns
out that this comparison will provide us with a useful interpretation of (3.31).
Hayashi and Sims suggest that instrumental variables - estimators be
corstructed by first filtering the disturbance term forward to remove serial
correlation. In other words, apply k(L ')~ ! to d to obtain

w,=w(L"")"d, (3.39)

where w, is a white noise and is orthogonal to all future &'s. Now we can
think of estimating {, using orthogonality conditions of the form

E[w®x,.]=0 (3.40)

22U YLy =L+ & Lt...+ LI, if egs. (3.38), (225), (2.26), and (2.27) are estimated jointly, and if
the disturbances are specified as an mth order vecter autoregressive process, the optimal finite
orthogonality condition GMM estimator described in section 3.1 it op‘imal in the broader
infinite orthogonalitv sense when P is chosen to equal r+m. When a version of budget
vonstraint (24) is added to the equations used to derive the restrictions, it is mo longer
W m assume that &L) is a finite order polynomial (see fcotnote 18). In such
nstance x’sunbemm»andesumauonmpmceed even though K1) is
m W [see Hangen and Smgleton (1982)1.
*3The fact that ¢ is a white noise :mposes rcstnctzons on the spectral densxty of d For
computztional purposes, it is convenient to ignore these restrictions ip estimating x. -
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for j=0. Since w is obtained from d using a forward fiiter, orthogonality
condition (3.40) is implied by orthogonality conditions (2.28), (2.29) and
(2.30). Hayashi and Sims discuss.estimation- of models that are linear in
parameters and variables using a finite number of the orthogonality conditions
like those in (3.40). They compare these forward filtered estimators to ones
which employ a fixed finite number of orthogonality conditions without
forward filtering and illustrate some advantages of forward. filtering. They
also investigate the limiting behavior of the asymptotic covariance of both
estimators as the number of orthogonality conditions employed gets large.?*

Let us now consider this form of the optimal forward filtered estimator
using all of the orthogonality conditions. In particular, we consider
estimators that use orthogonality conditions of the form

E[w[C{L)x,J]=0 (3.41)

for j=1,2,...,Q and wish to choose C,,C,,...,C, optimally. Since the w’s are
linear combinations of the current and future d's, the optimal forward filtered
estimator has asymptotic covariance matrix (3.34). In fact from (3.30), it is
evident that an optimal choice of C’s is

CHL)=[x(L™") ' B{LI(L) ™14 7(L). (3.42)

Using this optimal choice of C's will result in an estimator that is
asymptotically equivalent to an estimator constructed using the W¥s given
in (3.31). Eq. (3.42) turns out to provide the solution to an optimal prediction
problem. Using the Wiener-Kolmogorov prediction formula we can verify
that

E[x(z: ty- 1_____6’1“52 oz

¢,]=c,(L)x,. (343)

Thus, if we first filter the egs. (2.28), (2.29) and (2.30) forward to remove serial
correlation and then project the partial derivatives onto the set of
instrumental variables &,, we can obtain ar. optimal set of instruments to use
in estimation. This result is consistent with more conventional instrumental

24Hayashi and Sims (1982) provide the interpretation given below of the optimal weighting
scheme, but they do not explicitly characterize it. Rather than discussing how to construct
optimal extimators, Hayashi and Sims illustrate that by driving the number of orthogonality
conditions to infinity, the asymptotic covariance matrices of the estimators approach a limiting
covariance matrix like (3.35).
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variables estimators.?® The application of the forward filter (L)%,
however, requires the solution of a non-trivial prediction problem (3.43) to
obtain an optimal estimater which is esseatially the same computation as is

awmaual Som l@ﬂ!&lilﬁ bren o LE7%E
WEEQ i CAICanng ' .

4. A comparison to estimators constructed from Euler equations

In this section we examine three alternative instrumental variables
methods for estimating the paramecters of dynamic quadratic objective
functions of aconomic agents. The first method is one proposed by Kennan
(1979} and Hayashi (1980) that :stimates the parameters directly from the
Euler equations implied by the optimization problems of economic agents.
The second method is one proposed by Hansen and Sargent (1980) that
solves the Euler equations, exploits the symmetry between the feedforward
and feedback portions of this solntion, and imposes restrictions across the
feedforward portion of the solution and the stochastic specification of the
observable forcing variables. It turns out that this second method ignores
some resirictions across the feedback part of the sclution and the stochastic
specification of the observable forcing variables. For this reason we consider
a third method that imposes all of these restrictions. While the first method
is computationally simple and requires that less be said about the economic
environment a priori, it also ignores restrictions and consequently results in
parameter estimators that are asymptotically less efficient than the estimators
that emerge from the second and third methods.

The proposals made in section 3 about estimating the parameters of the
consumption model can be modified in a straightforward way to
accommodate any of the three methods. For this reason, we will not say very
much about estimation here, but instead we will describe the restrictions used
by each of the methods. To accomplish this, it is convenient to shift from the
consumption function example used in sections one and two to the factor
demand example mentioned in the introduction.

Following Hansen and Sargent (1980) we assume that a competitive firm
employing a single factor of production chooses a contingency plan for the
factor to maximize its expected present value

E{,;, Fl(e, ~ yin,~(e/2n? —(6/2)n,—n._ )] Qo}, (4.1)
subject to n_, given, where n, is employment of the factor at time ¢, y, is the

#*See Amemiya (1977} This link is pointed out by Hayashi and Sims (1982} in the context of
models that are linear in parameters and variables.
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real factor rental at ¢, and g, is the time ¢ technology shock observed by the
firrn but not by the econometrician.*® Here ¢ and J are positive parameters.
As in section 2, assume that there is a (p x 1) vector x, that is included in
agents’ time period ¢ information set , and that satisfies

E[ax,-1=0, (42)

j=0. Again, a has mean zero but can be serially correlated. The random
variable a, can be correlated with y, and future x’s and still satisfy (4.2).
The stochastic Euler equation for optimization problem (4.1) is

En:+1‘Qz+01"r+0'2"z—1=0'3,Vx‘"0'3“n 4.3)

where

oy =—[(e/0)+1+l/p,

0,= if ﬁs
o3=1/88.27 (4.4)

Following a suggestion of McCallum (1976), we can add n,,, —En,, |, to
both sides of (4.3) to obtain

Npy+ O+ 01 =03y, — 038+, —En |2 (4.5)
Associated with (4.5) is the orthogonality condition
E[(—o3a,+n,,,—En. ; Q:)xt—j] =0, (4.6)

j=0. Orthogonality condition (4.6) is implied by condition (4.2) and the
assumption that x, is-an element of Q,.

. The Euler equation approach suggested by Kennan (1979) and Hayashi
(1980) applied to this example entails constructing estimators of o,, 0, and
o5 from the orthogonality condition (4.5). Estimators of 6, ¢, and § can then
be obtained from the estimators of 7, ¢, and o3 by using the three
equations in (4.4). An advantage of thic procedure is that closed form
expressions can be obtained for the estimators of 4, ¢ and f, and that
numerical search procedures are not required to calculate the parameter

26We suppressed the linear term in the object ve function since we are assuming that the
rz:dom variables all have mean zero.
47See Sargent (1979} and Hansen and Sargent (1980).
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estimates. Although this method does not require that the projections of
#,41 M M-y, and y, onto the reduced information set @,={x,,x,-,,...} be
parameterized, it does implicitly assume that such: projections are time
invariant.?® The alternative two methods parameterize-these projections -and
obtain further restrictions accoss them. Notice that the Kennan-Hayashi
estimator based on (4.6) ignores the transversality condition, which is among
the first-order necessary conditions for the optimum problem. The alternative
two methods incorporate the restrictions implied by the transversality
condition. : .

We proceed to characterize these alternative methods of estimation. As in
section 2, we assume that

W= B(L)x, +u,, (4'7)

Xe+1 =}"(L}x,+e,+ 1 4.8)
where

Eux,_ ;=0 (4.9)

Ee,,x, ;=0 (4.10)

for jz0. Following Hansen and Sargent (1980), we solve the Euler equation,
subject to the transversality condition, to obtain

M= iy~ (48) Y. (ABYEU.rj~aur )| @ (a.11)
J=
where
—n — 2 _
;=% 26\/"1 4oy 4.12)
1

Notice that Z is less than one and that decision rule (4.11) possesses a
symmetry property since A is the feedback coefficient and enters into the
feedback geometric sum. Using a strategy analogous to that employed in
section 2, we rewrite {(4.11) as

;;,:}Jz,_l—{},/&;o{ﬁ.ﬁ)ii’.’y,ﬁ;¢,+s,.:-at¢’ i
B E © (4.13)

“iq hight of White's (1982) work on instrumental variables estimatcrs in cross-sectional
anafvs g, this is & bit of an sverstaternent,

£ 4
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where

S =(/0) Y, GBYEY:s| 0= Eyius| O,

© (4.14)
af =(1/9) _20 (ABYEa, , jl Q.
j=

Solving the prediction problem in (4.13) we see that

n=24an,_, +a(L)x,+s,+af, (4.15)
where

_ (L) — ABL ' 8(ABy(AB)~ 'y(L)
(L)=I— Ly'(L).?° (4.16)

Eq. (4.16) summarizes the restrictions across the feedforward part of the
decision rule and the law of motion for x. Using the definitions of s, and af
in (4.14) and an iterated projection argument we obtain the orthogonality
condition

Ef(s,+a¥)x,-;1=0 4.17)

for j20. Thus =n(L)x, is the projection of n,—An,_, onto the reduced
information set @, Modifying a strategy proposed in Hansen and Sargent
(1980), one can construct estimators of the underlying parameters 9, ¢, and §
together with the parameters of @ and y' from the orthogonality conditions
(49), (4.10), and (4.11).3° These estimators do not have closed form
representations, and numerical search procedures are needed to compute
them.

Since the second method is computationally more difficult than the first
method, it is important to ascertain whether additional restrictions are
exploited by the second.method. To answer this question, observe from (4.5),
(4.6), and (4.7) that the first method exploits the restrictions implied by

E[(L ' +0,+0,L)n,| 8,]=0:0(L)x,. (4.18)
The operator (L™ ! +0, +0,L) can be factored to obtain
(L 40, +0,L)= (L —(1/AB)X1 — AL), 4.19)

29This can be established using the lemma in Appendix A of Hansen and Sargent (1980).
3%Hansen and Sargent (1980} assume that y, is in @,
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where 1< 1. Thus, relation (4.18) can be written
EQ(1 — ALy, | 91—~ (V/APEL( — ALjn, | @]=0s0(L)x,  (420)

In other words, one can interpret (4.18) as a set of restrictions across the
projections of (1—4iL)n,,; and {1 —AL)n, onto @,. That is, if we let

Ef(1 -ZL)n,;«p,]=n(L)x,, o (4.21)

E[{(1—ALn,,|®]}=7(L)x,, | (4.22)
then (4.18) implies that

L) —(1/ABym(L)= o 30(L). (4.23)

Now it turns out that given the projections of (1 —AL)n, and x,,, onto &,
it is possibie to compute the projection of (1 —~AL)n, ., onto @, To see this
aote that

E[(1—iLn, .| @4 J=n(L)x, .,

=X, 4 1 + (L)X, 4.249)

Projecting onto &, we see that
E[(1—iLjn, ;1| ®,] = [moy*(L )+n’(L]']x,, f @2y
and hence - ‘ o
{L)= no?’(L)-!- n‘(L) (4 26)

While the first method explmts only restrictions (4 18), it-can be vcr'jied that
the specification of =(L) in (4.16) satisfies both (4.18) and (4.26). Thus. the
second method does indeed impose more restrictions than- the first method.

This raiscs the question of whether there are any additional restrictions
that can be exploited in estimation. It turns out that there are.-To see this
notice that the second method works with the projection of the quasi-
differenced form (1 — AL)n, onto @, but does not exploit the link between the
projections of n, and n, _ ,ontodi Inpartwular let

En,_,|® —W(L)xu (4.27)
En,|®,=i{L)x,
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The second strategy uses the fact that
L AO-=nL), | (428
wneren(L) satxsﬁes(416) ,-Follbwing the same logic as above, there exist
additional restrictions that link #(L) to n(L) and y%(L). More precisely, note
that ,
FL)x,=E[En, | ®,,,|®,]
=Bl 62
=E[Mox;+ 1 +1'(L)x, | ]
=[noy (L) +n*(L)]x,. (4.29)
Thus,
L) =310y (L) + (L), (4.30)
Combining (4.28) and (4.30), we see ihat
Hoy (L) +n" (L)~ Ang— ALn*(L)=n(L), (4.31)

where n(L) is given in (4.16). Solving for the operator n*(L), it follows that

n(L) + Ang __'10)’1(1«)

PO =G AL 1L 32
The’refore_" |
n(L)=no+ Ly'(L)
_ Lnd) | nov(L) (4.33)

T(1-ALy (1—ALY

"'An estimation method that impcses more restrictions than either of the
two procedures mentioned previously is to estimate the projection equations

=D, 439
where

EU:X:__,‘:O



294 L.P. Hansen ard T.J. Sargent, Instrumental variables procedures

for j20, (4.7}, and (4.8) jointly subject to restrictions (4.16) and (4.33). The
parameters to be estimated nder this strategy are f, J, & 7o and the
parameters of (L) and y'(L).>! Projection (4.34) accommodates the
possibility thay the projection of 1, onto current, past and future x’s is two-
sided. If #, is not zero, it follows from a theorem in Sims (1972) that the
observable forcing variables x, are not strictly exogenous in a regression of n,
onto current and past x’s. Consistent with our previous proposals, this
procedure ses the x’s as instruments but does not assume that the x’s are
€10genous.

In comparing the three methods, we conclude that the Euler equation
approach to estimating dynamic linear rational expectations models is
computationally simpler and requires that less be specified a priori. On the
other hand, it ignores restrictions and yields estimators that are
asymptotically less efficient than estimators that exploit restrictions across
the decision rule parameters an< the parameters of the stochastic process
assumed to generate the observable forcing variables. It is important to
realize that even though the Euler equation approach does not require an
explicit stochastic specification of the observable forcing variables, this does
not mean the resulting instrumental variables estimators will be more robust
against alterations in policy regimes that occur during the sample period. As
noted previously, the Euler equation approach implicitly assumes that the
projections of the variables onto the instruments have time invariant
representations.32

5. Conclusion

In building rational expectations econometric models, a researcher is often
confronted with an estimation environment in which disturbance terms are
seriairy correlated and instruments are not strictly exogenous. This paper
proposes a class of estimation procedures that are appropriate in this
environment. In this paper we have shown how to construct estimators from
an underiying set of orthogonality conditions implied by the econometric
raodel. A whole class of consistent and asymptotically normal estimators has
been described. A researcher can take into account the tradeoff between
computational simplicity 2nd the size of the asymptotic covariance matrix of
the resulting estimators in deciding whicl. of these procedures to employ. We

**The projection of n,., onto @, is constraiued to have a denominator term (1 —AL). Thus
hypothetical disturbances depend on infinitely many past x’s. As noted in footnot: 22, an
argument in Hansen and Singleton (1982) shows that pre-sample period x’s can be set to zero.

2 4s pointed out in footnote 29, this is a bit of an overstatement. However, it is not clear that
what people have in mind when considering alterations in policy regimes is accommodated by
the types of deviations from stationarity that White allows in his framework.
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tave also shown how to construct tests of the restrictions implied by the
econometric model using these instrumental variables procedures. Although
our econometric discussion took place mainly in the .ontext of a rational
expectations, permanent income consumption function model, the estimators
we propose are applicable to many other examples of linear rational
expectations models.
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