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Resumen 

Básicamente, cualquier proceso que evoluciona con el tiempo es un sistema dinámico. 
Los sistemas dinámicos aparecen en todas las ramas de la ciencia y, virtualmente, en 
todos los aspectos de la vida. La Economía es un ejemplo de un sistema dinámico: las 
variaciones de precios en la Bolsa de Valores son un ejemplo simple de la evolución 
temporal de dicho sistema. El principal objetivo del estudio y análisis de un sistema 
dinámico es la posibilidad de predecir el resultado final de un proceso. 

Algunos sistemas dinámicos son predecibles y otros no lo son. Existen sistemas 
dinámicos muy simples que dependen de una sola variable y muestran un 
comportamiento sumamente no predecible, debido a la presencia del “caos”, esto es, 
poseen una dependencia sensible a los valores iniciales.  

El objetivo principal de este trabajo es investigar cuáles son los factores que producen 
caminos alternativos para pasar del orden al caos en problemas económicos.   

Palabras clave: caos, atractores y repulsores, bifurcación, atractor extraño, contornos 
fractales. 
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Abstract  

Basically, any process evolving with time is a dynamical system. Dynamical systems 
appear at every branch of Science and virtually at every aspect of life. Economy is an 
example of a dynamical system: the prices variations at the Stock Exchange is a simple 
illustration of the temporal evolution of this system. The main objective of the study and 
analysis of a dynamical system is the possibility of predicting the final result of a process. 

Some dynamical systems are predictable and some are not. There are very simple 
dynamical systems depending only on one variable that show a highly non predictable 
behavior, due to the presence of “chaos”, that means they possess a sensitive dependence 
on the initial values.  

The main aim of this paper is to investigate which are the factors that produce alternative 
roads to pass from order to chaos in economic problems.  

Keywords: chaos, attractors and repellers, bifurcation, strange attractor, fractal basin 
boundaries. 
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1. DYNAMICAL SYSTEMS  

Basically, any process evolving with time is a dynamical system. 
Dynamical systems appear at every branch of Science and virtually at 
every aspect of life. Economy is an example of a dynamical system: the 
prices variations at the Stock Exchange is a simple illustration of the 
temporal evolution of this system. 

The main objective of the study and analysis of a dynamical system is 
the possibility to predict the final result of a process. A natural 
question arising in this field is the following: 

(1) If we know with every detail the past evolution of a temporal process, 
can we predict what will happen in the future? 

Mathematically, the question is posed in this way: 

(1) Can we derive the asymptotic behavior of the dynamical system if we 
know exactly its past evolution? 

The answer to this fundamental question is sometimes affirmative and 
sometimes negative. This means that some dynamical systems are 
predictable -- i.e., we can be sure that the sun will rise every morning -
- and some are not predictable -- i.e., we cannot be completely sure 
when will it rain.  

What is that makes the difference between predictable and non 
predictable dynamical systems? It is not the number of parameters 
intervening in the process, as may be believed by the analysis of the 
previous examples: dynamical systems with a great number of 
variables, like the economy of a country, are certainly not predictable. 
But on the contrary, there are very simple dynamical systems 
depending only on one variable that show a highly non predictable and 
essentially stochastic behavior.  

The blame -- if any -- for this high lack of predictability is to be put on 
the mathematical notion of “chaos”, which surprisingly appears more 
frequently than we expect, even in the simplest dynamical system.  

If the mathematical description of the dynamical system is given by one 
or more differential equations, we say it is a “continuous dynamical 
system”. If, instead, its behavior is described by one or more equations 
in differences, like the one we shall expose in the following example, it 
is a “discrete dynamical system”. We know real dynamical systems 
are continuously evolving with time, but in many situations the 
dynamical system state in a certain point at a certain instant of time 
depends on the state of the system at a previous instant: in most cases 
it is more convenient to choose a discrete dynamical model. 
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Example: Let us assume that today I deposit $ 1,000 at a bank that 
pays an interest rate of 10% per year. At the end of the first year, I 
shall have 

C(1) = 1,000 + 0.1 (1,000) = 1.1 (1,000) = 1,100. 

Similarly, at the end of the second year, my capital will amount to 

C(2) = 1.1 (1.1) 1,000 = (1.1)2 1,000. 

Obviously, if we call C(0) the initial capital, the discrete dynamical 
system will satisfy the following equation: 

   C(n + 1) =  C(n) + 0.1 C(n) where n = 0,1,2,... 

whose solution is 

   C(k) =  (1.1)k  C(0)  for k = 1,2,3,... 

In this case, we say it is a “discrete first order dynamical system”, 
because every iteration depends only on the previous one. More 
generally, if a dynamical system is described by a set of equations such 
as 

(1.1)   A(n + 1) = f ( A(n) )  for n = 0,1,2,... 

where f is any function, we say it is of first order. Evidently, a 
dynamical system can be of higher order, for example: A(n+ 2) = 3 A(n + 
1) + A(n) is a second order dynamical system. To solve this dynamical 
system, it is necessary to know not only the value of A(0) but also the 
value of A(1), because if not one could not find the value of A(2). These 
values of A(0) and A(1) are called “initial values”. It is easy to 
generalize this result: 

To solve a dynamical system of order m it is necessary to fix m initial 
values. 

If the function f is linear and its graph (x,f(x)) passes through the 
coordinate origin, the dynamical system is called “linear”,  i.e. A(n + 1) 
= k A(n), where k is a constant. If f(x) is linear but its graph does not 
cross the origin, the dynamical system is called “affine”, i.e. A(n + 1) = 
m A(n) + b, where m and b are constants.  

Finally, if f(x) is not linear, i.e. A(n+1) =  A2 (n) + A3(n - 1), the dynamical 
system is called “nonlinear”. Evidently, linear systems are much 
easier to handle, but nonlinear dynamical systems are more successful 
in modeling the real world phenomena. 
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2. FIXED POINTS. ATTRACTORS AND REPELLERS 

Given a first order dynamical system  

(2.1)   A(n + 1 ) = f ( A(n) )                with A(0) = a 

we say that the point a is an “equilibrium point” or “fixed point” for 
this system if A(k) = a for every value of k. That is, A(k) = a is a constant 
solution for the dynamical system. Constant solutions are important in 
the sense that they inform us about the future behavior of the 
dynamical system. It is very easy to prove that the point a is a fixed 
point for (2.1) if and only if a = f(a). Indeed, if we state a is a fixed point, 
being A(0) = a, it results 

A(1) = f (A(0)) = f (a) = a 

A(2) = f (A(1)) = f ( f (A(0)) = f (f (a)) = f(a) = a 

........................................................................... 

and conversely, if all these equations are satisfied, we are sure a is, by 
definition, a fixed point for (2.1). 

Example 1: Let us have the following first order dynamical system 

A(n + 1) = - 0.8 A(n) + 3.6. 

The fixed point a of this system must satisfy the first degree algebraic 
equation 

a = - 0.8 a + 3.6     from where a = 2. 

Example 2: Let us have the nonlinear dynamical system 

A(n + 1) = 1.5 A(n) - 0.5 A2 (n). 

To find the fixed points of this system, we must solve the second degree 
equation 

a = 1.5 a - 0.5 a2 , 

whose solutions are a = 0 and a =1. 

Now, the question is: how do we analyze the stability of a fixed point? 
The answer is intuitively evident in the sense that the point a  will be a 
“stable fixed point” or “attractor”  if, as time passes by, the values of 
the iterates A(k) for very big values of k are very near the point a. 
Mathematically, we say that a is an attractor if there exists a number ε 
such that  

    lim ( )
n

A n a
→∞

=  
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when a a0 − < ε . 

On the opposite, a will be called “unstable” or “repeller” if there exists 
a number ε  such that  

    A n a( ) − > ε  

when 0 < a a0 − < ε . for some values of n but not necessarily all 
values. 

It is necessary to mention that there exist also fixed points that are 
neither stable nor unstable, i.e., the fixed point a may be half stable, 
attracting solutions coming from its right and repelling solutions 
coming from its left, or vice versa. 

Obviously, it is in general impossible to solve analytically a nonlinear 
dynamical system. We may calculate the successive iterates A(0), A(1), 
... , A(n) for n sufficiently big, but we are not able to find an analytic 
expression of A(n) in terms of n. Notwithstanding, if there are fixed 
points in the dynamical system, we have a very simple criterion for 
determining when the fixed point is stable or not. In fact, a will be an 
attractor if f a' ( ) < 1 and a repeller if f a' ( ) > 1. This is because 
the first derivative at the fixed point f’(a) is the best linear 
approximation to the curve f(x) in a sufficiently small neighborhood of 
the point a, and this linear approximation is all what we need to 
analyze the stability of the fixed point.  If, finally, f ´(a) = ± 1, the first 
derivative gives not enough information, it is necessary to calculate also 
the second and the third derivatives of f(x) to determine the stability of 
the fixed point. 

In Example 1, being f(x) = - 0.8 x + 3.6; f ‘(x) = - 0.8 and f (2) = - 0.8, 
with absolute value 0.8 < 1, the fixed point a = 2 is an attractor, while 
in Example 2, being f(x) = 1.5 x - 0.5 x2, the derivative is f ’(x) = l.5 - 2 x. 
So f ‘(0) = 1.5 > 1 and the fixed point is a repeller; instead f ‘(1) = - 0.5 
with absolute value 0,5 < 1 and the  fixed point is an attractor. 

Instead of calculating derivatives, it is much easier to analyze the 
stability through the use of a “graphical iteration method” that 
consists in the following procedure:  

Let us have the dynamical system   

   A(n + 1 ) = f ( A(n) )                with A(0) = x0. 

The sequence of iterates is  
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  A(1) = f (x0); A(2) = f (A(1)) = f (f (x0)); ... ;  

  A(n + 1) = f (A(n)) = f (f (...(f (x0)) = f  n (x0) 

where f n indicates the nth iterate of the function f.  

If we represent in the same coordinate system the graph of y = f (x) and 
the straight line y = x, obviously the point of intersection of both graphs 
is a fixed point a. If we begin with a certain x0 and mark f (x0  ) = A(1) on 
the y-axis, tracing an horizontal line until it cuts the line y = x, we get 
A(2) on the x-axis and f (A(2)) = A(3) on the y-axis and so on. If, like in 
Fig. 1 that corresponds to Example 1, the behavior is stable because 
the sequence of iterates tends to the fixed point a = 2, we say that this 
point is an attractor. Instead, if like in Fig. 2 that corresponds to 
Example 2, the sequence of iterates tends to go away from the fixed 
point a = 0, we conclude that this point is repelling or unstable. 
Clearly, the other fixed point x = 1 is attracting or stable. 

 

3. BIFURCATIONS 

Mostly, we do consider our universe as continuous, in the sense that a 
small variation in the “entry” produces a small variation at the “exit”. 
But this is not always the rule! Precisely, “bifurcation theory” is the 
study of the point at which the qualitative behavior of a dynamical 
system changes. 

A physical example in which there is a bifurcation is the melting point 
of ice. As everybody knows, the qualitative behavior of water when the 
temperature is above freezing is quite different from the behavior when 
the temperature is below freezing. The value of the temperature of 
water at which there is a breaking point is called the “bifurcation 
value”. 

Another physical system where we find bifurcations is the “turbulence”. 
In the 19th century, the English physicist, Osborne Reynolds (1842-
1912), experimented with pipes of different diameters and discovered a 
number -- called today “Reynolds number”-- that indicates the 
engineer at which instant of time the system will become turbulent. 
This number depends on the pipe width, the fluid viscosity and the flow 
velocity. It is one of the ends of a spectrum that covers from regular 
flow to vortices, periodic fluctuations and chaos. A curious 
characteristic of this spectrum is its “self-similarity”, repeating itself in 
different scales. 

To describe the behavior of a dynamical system, we use a “bifurcation 
diagram”. How do we construct it? Let us assume we have a dynamical 
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system involving a parameter b. We find all fixed points a as a function 
of b and plot these functions on the (b-a) plane. We look for ranges of b 
for which each of these fixed points is attracting and draw vertical 
arrows towards them. Similarly, for repelling fixed points, we draw 
arrows away from them. Finally, we also draw arrows either up or down 
for values of b for which there are no fixed points. 

 

Example 1. Deer population growth 

Consider a population where it is allowed to hunt b units of deer per 
season. The dynamical system that models growth is the following 

A(n + 1) = 1.8 A(n) - 0.8 A2 (n) - b. 

The fixed points are the solutions of equation 

a = 1.8 a - 0.8 a2 - b 

or else 

0.8 a2 - 0.8 a + b = 0   from where a2 - a + 1.25 b = 0, 

whose solutions are: a = 
1 1 5

2
± − b

. 

There are three cases:  

1) 1 - 5b < 0, that is, b > 0.2: in such a case, there are no fixed points;  

2) 1 - 5b > 0, that is, b < 0.2: in this case we have two fixed points and 

it is easy to prove that a1 = 
1 1 5

2
+ − b

 is attracting or stable if - 1.05 < 

b < 0.2 and a2 = 
1 1 5

2
− − b

 is repelling or unstable if b < 0.2;  

3) b = 0.2 and there is only one double root a = 0.5.  

The value b = 0.2 is the bifurcation value and the bifurcation diagram 
is the one depicted in Fig. 3. 

 

Example 2. In some cases, like the following dynamical system 

A(n + 1) = - A(n) + 4, 

whose fixed point is the solution of equation: a = - a + 4, that is, a = 2, 
if we let the initial condition be A(0) = 6, we get a closed figure when we 
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follow the vertical and horizontal procedure for determining graphically 
the stability of the fixed point a = 2 (see Fig. 4). This means that the 
solution forms a “2-cycle” oscillating between x = -2 and x = 6.  

In this case, the fixed point is said to be “neutral”. 

 

4. CHAOS AND STRANGE ATTRACTORS 

Intuitively, a dynamical system exhibits “chaos” if it has a sensitive 
dependence on the initial values. More precisely, a dynamical system 
has sensitive dependence on the initial values if, whenever you take two 
initial values, a0  and b0,  which are close together. Then the two 
corresponding sequences of successive iterates A(k) and B(k) eventually 
get further apart. 

To detect chaos, we need two new concepts:  

1. The set of all attracting points in a dynamical system is called an 
“attractor”. 

2. A dynamical system is said to be “transitive” if, when the initial 
value a0 is close to some point in an attractor S, the sequence of 
iterates A(k) gets “close” to every point in S. 

Suppose now a dynamical system that is: 

I) transitive on its attractor S; 

II) has sensitive dependence of initial values and  

III) has repelling cycles that are close to the attractor S. 

Then this dynamical system exhibits “chaos” and the attractor is 
called a “strange attractor”. In other words, a dynamical system 
exhibits chaos if in one sense there is unpredictability (the sensible 
dependence on initial values makes impossible to state precise 
predictions), but in another sense, there is predictability (the property 
of transitivity assures we will be at a point on the strange attractor, but 
we do not know when!). As curious as it may sound, we have also order 
out of chaos, in the sense that we have lots of cycles (nice solutions that 
repeat every 2n time periods). 

In Fig. 5 we show a beautiful example of a strange attractor: it is the so 
called Lorenz attractor, discovered by the meteorologist Edward N. 
Lorenz in 1962, at the Massachusetts Institute of Technology, long 
before this concept was introduced in the scientific world.  
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In this figure, the solution of the system of three nonlinear differential 
equations starts from the origin (0,0,0) at time t = 0, then makes one 
loop to the right, then a few loops to the left, then to the right and so on 
in irregular manner. If one would take, instead of (0,0,0), a nearby 
initial condition, the new solution would soon deviate from the old one 
and the numbers of loops to the left and to the right would no longer be 
the same: this is a proof of the sensitive dependence with respect to 
initial conditions.   

Strange attractors are relatively abstract mathematical entities but 
computers give them some life and draw pictures of them. Finally, it is 
interesting to mention that all strange attractors that have been found 
up to now have fractal dimensions that are not necessarily integer 
numbers. The magnitude of the fractal dimension is, intuitively, a 
measure of the “roughness” of the configuration, either a line or a 
surface. 

 

5. FRACTAL BASIN BOUNDARIES 

Sensitive dependence on initial conditions is one of the main properties 
of chaos generation. Notwithstanding, there exists a different kind of 
sensitivity, namely the so called “final state sensitivity”.  This 
phenomenon may arise whenever there are several coexisting attractors 
and not only one. These several attractors may be strange attractors or 
simply attractive fixed points of a dynamical system. Therefore, there 
must be a “boundary” of the corresponding basins of attractions. Such 
boundaries are often fractals. 

Physically, an initial point can only be specified numerically up to some 
precision b. If all orbits that started within the distance b from the 
initial point converge to the same attractor, then it is possible to predict 
the final state. However, if some of these orbits converge to one 
attractor and the rest of them to another, no longer can we predict the 
final state corresponding to the initial point. Obviously, this difficulty 
grows when the fractal dimension of the basin boundaries gets larger.  

Summarizing 

Fractal basin boundaries with a large fractal dimension are an 
impediment for the predictability in nonlinear dynamical systems with 

several attractors. 

A beautiful computer model of such a behavior is thoroughly analyzed 
by Peitgen et al., p. 757. 
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6.  ROUTES TO CHAOS. ARE THEY UNIVERSAL? 

The concept of “chaos” is very ancient: it comes from the Pelasgian people, 
who lived at the Peloponnesian Peninsula before the Greek culture. In his 
religious ideology, afterwards adopted by the Greeks -- as is mentioned by  
Robert R. Graves (1895-1985) --  the meaning of chaos was the “abysmal 
void”, previous to the birth of the world (cosmos: order). It was considered 
like a goddess -- Eurynome, all the names -- and conceived like the main 
element or shapeless mass, including the future constituent elements of the 
world (air, water, earth and fire) confusedly mixed. Until the ‘80 decade, the 
word “chaos” indicated a state of disorder, of deterioration and even of 
death.  Since the eighties, the paradigm has notably changed. Scientists 
have recognized that Nature may use chaos in a constructive way. Through 
the amplification of small fluctuations, it facilitates natural systems the 
access to creativity. Biological evolution needs genetic variability; the 
concept of chaos supplies a way of structuring random changes, making it 
possible that variability be under evolutive control.  

The same process of intellectual progress is based upon the injection of new 
ideas and new ways of connecting the old ones. Under what is known as 
innate creativity, there could be an underlying chaotic process that 
amplifies selectively small fluctuations and molds them in coherent and 
macroscopic mental stages that are experimented as thoughts. In some 
cases, thoughts may be decisions or what is felt like an exercise of will. 
From this point of view, chaos supplies a mechanism that allows free will in 
a world governed by deterministic laws.  

Precisely in these last years, together with researches about certain 
nonlinear phenomena that pass from order to chaos in different scientific 
fields, there have been a lot of investigations on subjects like Medicine, 
Neuronal Nets (research on the functioning of the human brain), Evolution 
and History, Enterprises Management, Factories Organization, Development 
and Planning of Cities, Criminality and Society, Urban Morphology, etc. 

How do we arrive practically to “chaos”? Given a physical system there are, 
obviously, many alternative roads to pass from order to chaos, but some of 
them show certain characteristics that are common to another processes 
that have nothing to do with them! That is, these roads to chaos are 
completely independent of the concrete system in observation. For this 
reason, they are called “universal”, adopting a terminology introduced by 
the physicists Leo Kadanoff, Kenneth Wilson and Michael Fischer in the 
seventies, analyzing the properties of phase changes. In this context, a 
description has been developed, playing a very important role in the 
analysis of complex systems. It is the description of the invariance in the 
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presence of “scale changes” in natural structures. This property has been 
designed as “self-similarity” and is an essential feature of “fractals”. 

But if we ask ourselves: Which are the routes to chaos? the answer is 
still open! There exist some universal scenarios of the roads to chaos, 
such as “period doubling bifurcations”.  

 

7. PERIOD DOUBLING BIFURCATIONS IN ECONOMY 

The classical deterministic model of economical growth, as is well 
known, depends on three elements: 

1. An equation relating the net rate of births of the population with 
the money income 

2. A production function describing the “immediate product of 
labor” 

3. A distribution function defining the wages of labor. 

The astonishing range of qualitative behaviors corresponding to the 
classical model and its onset to chaos may be analyzed when one 
specifies the production function. A reasonable production function is 
the one given by the following nonlinear equation 

(7.1)    f(P) = k Pb (1 - P)d 

in which the term APb  represents the usual power production function  
and the term (1-P)d is a factor of productivity reduction due to a 
concentrated population surplus. Let us assume, for simplicity, that b 
= d = 1. Then, the production function is given by the following 
quadratic equation  

(7.2)    f(P) = k P (1 - P) 

which is the well known “logistic equation”, discovered by Pierre F. 
Verhulst (1804-1849) studying the dynamics of population [6]. And 
what is most remarkable about this equation: it describes a nonlinear 
dynamical system of economical growth of complicated behavior! This 
means that we have to solve iteratively the simplest nonlinear map 
given by  

(7.3)    P k P Pn n n+ = −1 1( )   

The detailed dynamics of the logistic map described by equation (7.3) is 
easily followed on a computer. The experiment consists of studying the 
iterates Pn  for successive values of k, taking as time unit a generation 
of 25 years. In Fig. 6 we notice a pitchfork bifurcation for the dynamical 



W. de Spinadel / Cuadernos del CIMBAGE Nº 11 (2009) 25-38 
 

37 

system P(n + 2) = f(f(P(n))), where  f(x) = k x (1 - x); 0 ≤ k ≤ 3.45. This 2-
cycle corresponds to a period doubling bifurcation for the original 
system. Similarly, in Fig. 7 we have a pitchfork bifurcation for the 
dynamical system P(n + 4) = f(f(f(f(P(n))))) that corresponds to a 4-cycle 
for the logistic equation;  0 ≤ k ≤ 3.54. In Fig. 8 we see an 8-cycle for 
3.55  ≤ k  ≤ 3.57. Finally, in Fig. 9 we have the whole bifurcation 
diagram from first period-doubling bifurcation at k = 3.0 to ergodic 
limit at k = 4. The value k∞  is the period-doubling accumulation point.  

Summarizing, for k < k ∞ = 3,5699456… the iterated values of the 

functions f(n)(P) are periodic. For k = k ∞ the iterated values are a-
periodic and converge to a “strange attractor” that is a two-scale 
Cantor set generated with a model of two different intervals A 1  = 0,408; 

A 2 = A 1
2 with equal probabilities p 1 = p 2 = 0,5. The fractal dimension D 

of this attractor model is given by equation (see Vera W. de Spinadel, p. 
160) 

(7.4)      A 1
D + A 2

D = 1 

Or else A 1
D + (A 1

D )2  - 1 = 0, which positive solution is 

A 1
D = ...618,0

2
15
=

−  

This value is known in Physics as the “Golden Mean”, because the 
scientists use to work in the unitary interval, reducing all values mod 

1. Notice that 0,618… = 1/φ , where φ = ...618.1
2

51
=

+  is 

mathematically known as the Golden Mean.  

Then we have 

D = 537,0
408,0log
618,0log

≅ , 

that is really the maximum value of the logistic parabola (7.2).  

In this example, the chaotic answer is generated by the nonlinearity of 
the production function. The time unity was considered as a generation 
of 25 years, because this was the period that the Classics thought 
appropriate for the study of long-run dynamics. However, it may be 
proved that there is also a chaotic behavior when there is a natural 
growth rate that would imply a duplication of population every two 
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generations, figure that appears to be reasonable in the context of 
historical registers. 

Finally, it is interesting to mention that the same type of phenomenon 
of onset to chaos in Economy appears also in many nonlinear 
continuous temporal models, that is models described by differential 
equations. Such equations, to exhibit chaos, have to be of third order, 
what implies much more sophisticated considerations and a greater 
dependence outline the numerical calculus (see Benoit Mandelbrot & 
Richard Hudson). 
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