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ABSTRACT

RESUMEN

DENSITY ESTIMATION USING BOOTSTRAP QUANTILE
VARIANCE AND QUANTILE-MEAN COVARIANCE

We propose two novel bootstrap density estimators based on the quantile variance and the quantile-mean covariance. We review previous 
developments on quantile-density estimation and asymptotic results in the literature that can be applied to this case. We conduct Monte Carlo 
simulations for dierent data generating processes, sample sizes, and parameters. The estimators perform well in comparison to benchmark non-
parametric kernel density estimator. Some of the explored smoothing techniques present lower bias and mean integrated squared errors, which 
indicates that the proposed estimator is a promising strategy.

Evaluamos dos estimadores de densidades basados en la varianza y la covarianza entre media y varianza estimados por bootstrap. Revisamos 
otros desarrollos de estimadores de densidad relacionados con cuantiles. Las simulaciones de Monte Carlo para distintos procesos generadores 
de datos, tamaños de muestra, y otros parámetros muestran que los estimadores tienen buena performance en comparación con el estimador 
no paramétrico de kernel. Algunas de las técnicas de suavizamiento tienen menor error cuadrático medio integrado y sesgo, lo que indica que los 
estimadores propuestos son una estrategia promisoria.
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1 Introduction

A well known result is that if the continuous random variable X has distribu-

tion function F , density f and median q0.5, then the sample variance of q̂0.5,

the median estimator, has asymptotic variance 1
4f(q0.5)2

. According to Stigler

(1973), this result together with the asymptotic properties of the median es-

timator was firstly stated by Laplace in 1818. A similar result applies for any

quantile τ ∈ (0, 1): let qτ (where qτ := F−1(τ) = inf{x : F (x) ≥ τ}) and q̂τ

be the population and sample τ -quantile, respectively, then, the asymptotic

variance of the sample quantile is equal to τ(1−τ)
fX(qτ )2

(see, e.g., Moore, 1969).

Ferguson (1999) extended these results and proved that the sample quantile

and the sample average have an asymptotic covariance equal to $(τ)
f(qτ )

, where

$(τ) = E[ρτ (X − qτ )] and ρτ (u) = u{τ − 1[u ≤ 0]} is the quantile check

function in Koenker and Bassett (1978). Overall, the above known results

indicate that density functions f and moments of the sample quantiles are

closely linked to each other.

As stated by Koenker (1994), given that f(qτ ) reflects the density of

observations near the quantile τ , it is not surprising that the asymptotic

precision of quantile estimates depend on the reciprocal of a density function

evaluated at the quantile of interest. This idea of studying the locations

where information is more sparse had led Tukey (1965) to name the sparsity

function, sτ , as the inverse of the density function, also referred as quantile
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density function by Parzen (1979). More precisely, it can be stated that

sτ := dqτ
dτ

= q′τ = 1
f(qτ )

.

Based on the asymptotic properties of the sample quantile variance boot-

strap estimation derived by Babu (1986) and Hall and Martin (1988), and

the asymptotic quantile-mean covariance derived by Ferguson (1999), we ex-

plore the reverse problem of first estimating the sample quantile variance

and sample quantile-mean covariance using bootstrap, and then using them

to estimate the density function. This paper explores different smoothing

techniques to improve these estimators.

Using Monte Carlo simulations, we show that the estimators perform

well in comparison to the benchmark kernel density estimator. Some of the

explored smoothing techniques have lower bias and mean integrated squared

errors, which indicate that the proposed estimator is a promising strategy.

This paper is organized as follows. Section 2 presents a short literature

review of density estimation based on estimated quantiles. Sections 3 and

4 develop the two density estimators proposed in this paper, and Section 5

the smoothing techniques applied to those. Section 6 presents Monte Carlo

simulations. Section 7 concludes.
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2 Short literature review on recent advances

on density estimation using quantiles

The study of ordered statistics, i.e. the ith statistic X(i) coming from a set

of realizations of random variables X1 . . . Xn ordered such that X(1) ≤ . . . ≤

X(n), has a long tradition and a wide range of applications (see David and

Nagaraja, 2003, for a wide introductory coverage on the subject). Among the

ordered statistics, the use of percentiles or quantiles were pioneered by Galton

(1889),1 who computed medians and quartiles of conditional distributions of

the height of sons given the height of their parents. Since then, quantile’s

properties were further developed with remarkable contributions from Tukey

(1965), Pyke (1965), Parzen (1979), and Koenker and Bassett (1978) among

others.

The function qτ , denoted as the representative function by Tukey (1965)

or as quantile function by Parzen (1979), received increased attention over the

last decades. Parzen (2004) enumerate many of the benefits of doing statistics

in the “quantile way” and advocates for the potential of this perspective for

achieving an unification of the statistical methods.2 Whatever the optimism’s

degree of this proposition, the fact is that due to the growing use of quantile

1However, many properties of quantiles were developed before. See for example Hald
(1998) for a review on developments since 1750 and Stigler (1973) for Laplace’s derivation
of the asymptotic distribution of the median.

2From Parzen (2004, p.1): “I teach that statistics (done the quantile way) can be simul-
taneously frequentist and Bayesian, confidence intervals and credible intervals, parametric
and nonparametric, continuous and discrete data.”
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functions over the last decades, a growing number of q̂(τ) estimators and

different related applications emerged.

The limiting distributions for the sample quantiles, q̂τ , was attributed to

Mosteller et al. (1946); an intuitive proof is presented in Moore (1969); also

refer to conventional textbook proofs in Gilchrist (1980, p.77) and David and

Nagaraja (2003, p.287). This implies that by estimating f̂(qτ ), confidence

intervals for q̂τ can be constructed, and viceversa. As stated by Koenker

(1994), given that f(qτ ) reflects the density of observations near the quantile

of interest, it is not surprising that asymptotic precision of quantile estimates

depends on the reciprocal of a density function evaluated at the quantile of

interest. This idea of locations where information is more sparce had led

Tukey (1965) to name sparsity function at the inverse of the density function,

also referred as quantile density function by Parzen (1979).

Parzen (1979) introduced the kernel estimator for q̂τ , and it was sub-

sequently studied by Falk (1986), Csörgő et al. (1991), and Cheng (1998)

among others. This estimator is in the spirit of Siddiqui (1960) where the

quantile was estimated using a kernel, but it has the advantage of being esti-

mated using a single step by running a kernel smoother through consecutive

order statistics. Further advances on this can be found in Jones (1992), Wang

et al. (2012), Soni et al. (2012), Chesneau et al. (2016), Mnatsakanov and

Sborshchikovi (2018), and Saadi et al. (2019).
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Simultaneously, many efforts have been applied to directly estimate sec-

ond moments of point quantiles without the need of firstly estimating den-

sity function. For instance, Maritz and Jarrett (1978) pointed out the poor

small sample performance of the median variance estimations using Laplace’s

asymptotic result 1
4f(q0.5)2

. As an alternative, they proposed an estimator

based on incomplete beta functions capable of estimating variance for any

given order statistic or linear combination of them. Also, Efron (1979) in-

spired on the jacknife method (Miller, 1974) proposed the bootstrap for es-

timating not only variance, but also many other moments. Subsequently,

Babu (1986) proved consistency and Hall and Martin (1988) derived the rate

of convergence of the bootstrap quantile variance estimator.

Furthermore, Hall and Martin (1988) remarked the fact that, since quan-

tile variance estimation is tantamount to density estimation, their findings

apply equally well to a density estimator in the way we review in detail in

the following Section 3. Additionally, since the introduction of bootstrap to

this area, many advances had been done on variance estimation exploring

the three approaches proposed by Efron’s seminal work.3

Finally, Ferguson (1999) derived the asymptotic joint distribution of the

sample mean and any sample quantile. We review this result in Section 4.

3We will not discuss them, but limit ourselves to indicate that our proposed approach
for density estimation is flexible enough to be implemented, and presumably improved, by
any overperfoming method for variance and covariance estimation such as those proposed
by Sheater (1986), Huang (1991), Janas (1993), Rao et al. (1997), Hutson and Ernst
(2000), Ho and Lee (2005), Cheung and Lee (2005), and Alin et al. (2017).
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Bera et al. (2014) employed this results to test the equality of mean and

quantile effects on quantile regressions. Also, Bera et al. (2016) and Alejo

et al. (2016) showed that for the normal distribution the asymptotic covari-

ance between the sample mean and quantile is constant across all quantiles

and employed this fact for developing a new normality test. However, to

the best of our knowledge there are no results about the convergence rate of

quantile-mean covariance estimation using bootstrap, neither an application

of this results to density estimations. We expect that based on the promising

results from our Monte Carlo simulations, further research on this topic will

be done.

3 Quantile variance density estimator

Let (X1, ..., Xn) be an i.i.d. sample with distribution function F , density f ,

mean E(X) = µ and finite variance V ar(X) = σ2. Let 0 < τ < 1 and

let qτ = inf{x : F (x) > τ} denote the τ -quantile of X, so that F (qτ ) = τ .

Assume that the density f(x) is continuous and positive at x = qτ for all

τ ∈ (0, 1). Further consider the assumptions of Theorem 2.2 in Hall and

Martin (1988).

Let q̂τ denote the sample τ -quantile. Then, as n→∞, (Mosteller et al.,

1946; Moore, 1969):

√
n(q̂τ − qτ )

d−→ N

(
0,
τ(1− τ)

f(qτ )2

)
. (1)
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The quantile variance function, V ar(qτ ), is the asymptotic variance of

the sample quantiles, i.e., q̂τ ,

V ar(qτ ) ≡ lim
n→∞

nV ar(q̂τ ). (2)

From eqs. (1) and (2) we have

f(qτ ) =

√
τ(1− τ)

V ar(qτ )
. (3)

Then quantile variance estimator of f(qτ ) can be constructed using a consis-

tent estimator of V (qτ ). We evaluate the non-parametric bootstrap estimator

which takes B random sub-samples of size n out of n observations. This es-

timator has been studied by Hall and Martin (1988).

Consider the following algorithm:

1. Consider B bootstrap sub-samples of size n, {Xb
i }ni=1, b = 1, 2, ..., B.

2. Compute sub-sample quantile τ for sub-sample b as q̂bτ , b = 1, 2, ..., B.

3. Compute the bootstrapped sample quantile mean as q̂
B

τ = 1
B

∑B
b=1 q̂

b
τ , b =

1, 2, ..., B.

4. Finally, compute bootstrapped sample quantile variance as:

̂V arB(qτ ) =
1

B

B∑
b=1

(
q̂bτ − q̂

B

τ

)2

, b = 1, 2, ..., B.
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Then our proposed quantile density estimator is

f̂v(qτ ) =

√
τ(1− τ)

n ̂V arB(qτ )
. (4)

This estimator is based on the asymptotic result stating that if n ̂V arB(qτ )
p−→

V ar(qτ ) as n→∞ then f̂v(qτ )
p−→ f(qτ ) as n→∞. Hall and Martin (1988)

derives convergence properties for quantile variance bootstrap estimation and

shows consistency and the rate of convergence of the bootstrap quantile vari-

ance estimator and bootstrap sparsity function estimator.

In particular, Hall and Martin (1988, Theorem 2.2, page 262) shows that

n
5
4 ( ̂V arB(qτ )− V ar(qτ ))

d−→ N
(
0, 2π1/2[τ(1− τ)]3/2f(qτ )

−4
)
. (5)

Thus, as a corollary Hall and Martin (Corollary 2.2, p.263 1988) obtains the

main result,

n
1
4

(
f̂v(qτ )− f(qτ )

)
d−→ N

(
0, 1/2π−1/2[τ(1− τ)]−1/2f(qτ )

2
)
. (6)

Then, the rate of convergence of f̂v(qτ ) is also of order n−1/4, which is inferior

to regular kernel rate of converge n−2/5 (see Pagan and Ullah, 1999, for

standard resultsof the kernel density estimator). As a result, this proposed

method will be asymptotically inferior to the standard kernel estimator.
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4 Quantile-mean covariance density estima-

tor

The quantile-mean covariance function, C(q̂τ , x̄), is the asymptotic covariance

between the sample quantiles, i.e. q̂τ , with index τ ∈ (0, 1) and the sample

mean, i.e., x̄ = 1
n

∑n
i=1 xi,

C(q̂τ , x̄) ≡ lim
n→∞

nCov(q̂τ , x̄). (7)

Define the expected quantile loss function as

$(τ) = E[ρτ (X − qτ )] = τ(µ− E[X|X < qτ ]) = τ

(
µ− 1

τ
E[1[X < qτ ]X]

)
,

(8)

where ρτ (u) = {τ − 1[u ≤ 0]}u is the quantile check function in Koenker and

Bassett (1978).

By Ferguson (1999),

f(qτ ) =
$(τ)

C(q̂τ , x̄)
. (9)

The estimator of f(qτ ) requires consistent estimators of$(τ) and C(q̂τ , x̄).

Consider the following estimator for $(τ),

$̂(τ) = τ

(
x̄− 1

nτ

n∑
i=1

Xi1[Xi < q̂τ ]

)
,

and note that $̂(τ)
p→ $(τ) as n → ∞ (see Bera et al. (2016) for a deriva-

tion).
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The key point for achieving a consistent density estimator for f(qτ ) is to

consistently estimate C(q̂τ , x̄). That is, we want to estimate a “covariance”

between two random variables (e.g., as if we would estimate the covariance

between x̄ and σ̂2 or any other two “moments”).

We propose a non-parametric bootstrap estimator which takes B random

sub-samples of size n out of n observations and then follows these steps:

1. Consider B bootstrap sub-samples of size n, {Xb
i }ni=1, b = 1, 2, ..., B.

2. For each τ , compute the sub-sample mean x̄b and sub-sample quantile,

q̂bτ , b = 1, 2, ..., B.

3. Compute bootstrapped sample quantile-mean covariance as:

ĈB(q̂τ , x̄) =
1

B

B∑
b=1

(
x̄bq̂bτ

)
−

(
1

B

B∑
b=1

x̄b

)(
1

B

B∑
b=1

q̂bτ

)
.

Then our proposed quantile density estimator is

f̂c(qτ ) =
$̂(τ)

nĈB(q̂τ , x̄)
. (10)

5 Smoothing methods

In practice, the density estimator may have several kinks in small samples

because of the non-continuous nature of quantile estimators. That is, the

density estimators can only be estimated at qτ for the τs for which we can

estimate a sample quantile. Then we can propose smoothing strategies to

obtain smoother estimators.
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Moving average. Suppose a given grid of τ values T = {τ1, τ2, ..., τT}

such that τi < τi+1, i = 1, 2, ..., T −1. For simplicity we will write below f(τ)

instead of f(qτ ).

Then, consider a moving average of 2m + 1, i.e. we would consider m

quantiles to the left and m quantiles to the right to take an average, for τi,

i = m + 1, ...,m − 1. m is here a smoothing parameter and we can thus

analyze the asymptotic properties with respect to n and m to get optimality

properties.

f̂(τi)
MA =

1

2m+ 1

(
f̂(τi−m) + f̂(τi−m+1) + ...

+f̂(τi−1) + f̂(τi) + f̂(τi+1) + ...+ f̂(τi+m)
)
.

Alternatively, consider a moving average weighted by kernel function Ψ,

f̂(τi)
WMA =

1

2m+ 1

(
Ψ(τi−m − τi)f̂(τi−m) + Ψ(τi−m+1 − τi)f̂(τi−m+1) + ...

+Ψ(τi−1 − τi)f̂(τi−1) + Ψ(0)f̂(τi) + Ψ(τi+1 − τi)f̂(τi+1) + ...

+Ψ(τi+m − τi)f̂(τi+m)
)
.

HP filter. Hodrick and Prescott (1997) proposed a very popular method

for decomposing time-series into trend and cycle, which is a well-known pe-

nalized spline smoother. We apply this as follows:
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f̂(τi)
HP = min

f̂(τi)HP
{

T∑
i=1

(f̂(τi)− f̂(τi)
HP )2 + ...

+λ
T∑
i=1

[(f̂(τi)
HP − f̂(τi−1)HP )− (f̂(τi−1)HP − f̂(τi−2)HP )]2},

where T is the number of quantiles estimated and λ is a smoothing parameter.

6 Monte Carlo simulations

6.1 Data generating processes

In this section we present finite sample simulations to evaluate the perfor-

mance of the f̂v and f̂c density estimators.

For a given simulation j, the integrated squared error ISEj is defined as

ISEj =
∫ (

f̂j(q̂τ )− f(qτ )
)2

dτ where f(qτ ) is the known density function

evaluated at the true τ -quantile and f̂j(q̂τ ) is the estimated density for sim-

ulation j. Then, the mean integrated squared error (MISE) is computed as

MISE = 1
M

∑M
j=1 ISEj, where M is the number of simulations.

As a benchmark for each data generating process (DGP) we also estimate

its density with the kernel estimator, which takes the form

f̂k(q̂τ ) =
1

nh

n∑
i=1

k

(
Xi − q̂τ

h

)
, (11)

where n is the sample size, h is the bandwidth, and k(.) the kernel function.

We use the default kernel k(.) and bandwidth h set by STATA which are the

Epanechnikov kernel and optimal Gaussian bandwidth.
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In order to test the accuracy of our estimators we generate M = 1000 ran-

dom samples from the following DGPs, where all random variables are stan-

dardized to have a variance 1: (i) standard Gaussian distribution, N(0, 1); (ii)

symmetric Laplace distribution; (ii) asymmetric Gumbel, Gumbel(−γ
√

6
π
,
√

6
π

)

with γ ≈ 0.5772; and (iv) Gamma(1, 1).

As noted above, the discrete nature of quantiles produces in general a

disperse grid of estimating points. In order to reduce variability and improve

estimators performance we also compute smoothed versions (MA, WMA,

and HP ) of each estimator and evaluate their MISE. Given that quantile

variance and quantile-mean covariance are very volatile at extremes of the

distributions, we also explore f̂v(qτ ) and f̂c(qτ ) performance after trimming

the distribution support for left and right at ±1%, ±2.5% and ±5%. More-

over, in order to avoid upper-extreme values of f̂v(qτ ) and f̂c(qτ ) coming

from near-zero quantile variance and quantile-mean covariance estimations,

we also explore replacing extreme density values at the top 1%, 2.5% and

5%. We did so by replacing extreme values with their two nearest neighbors’

average density.

Unless otherwise specified, the simulations correspond to M = 1000 repli-

cations; B = 500 bootstraps in each case; quantiles grid given by τ ∈

{0.01, 0.02, . . . , 0.99} (Taus:100); and sample size N = 1000.
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6.2 Alternative distributions

Tables 1 to 4, one for each DGP, present the results of Monte Carlo simula-

tions in terms of bias and MISE for different density estimators that make

use of quantiles variance and quantile-mean covariance.4 Furthermore, as

a benchmark for comparing their performance, we also present in the last

rows of each table the ratio between each estimator’s MISE and that of the

standard kernel density estimator, f̂k.

Consider the first column in tables 1 to 4, which correspond to the den-

sity estimations before trimming. We can see that estimations f̂v(qτ ) and

f̂c(qτ ) of the Gaussian process in table 1 and Gumbel in table 3 perform

worse than f̂k(qτ ) estimator even after smoothing. Also, for those DGPs,

the best performance in terms of relative MISE is observed for the f̂v(qτ )
HP

estimator achieving a MISE about 50% greater than f̂k(qτ ). For the Laplace

distribution presented in table 2, however, f̂v(qτ )
HP MISE is only 63% of

that achieved by f̂k(qτ ) with most of the reduction coming from f̂v(qτ )
HP ’s

lower bias. Furthermore, for the Gamma distribution in table 4, most of

the proposed estimators over-perform the traditional kernel estimation. For

instance, f̂c(qτ )
MA’s MISE is 94% of that resulting from f̂k(qτ ) and f̂v(qτ )

HP

is as little as 7.6% of f̂k(qτ )’s MISE.

In summary, the f̂v(qτ ) estimator outperforms f̂c(qτ ) for most of the

4Four based on quantile variance (f̂v(qτ ), f̂v(qτ )MA, f̂v(qτ )WMA, and f̂v(qτ )HP ), four

based on quantile-mean covariance (f̂c(qτ ), f̂c(qτ )MA, f̂c(qτ )WMA, and f̂c(qτ )HP )
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DGPs, and they are better than f̂k(qτ )’s for some of the proposed distri-

butions like Laplace and Gamma.

Due to the bootstrap sub-sampling nature, f̂v(qτ ) and f̂c(qτ ) estimators

are very unstable at the extremes of the distribution support. A major risk for

stability arises from sporadic sub-samples with quantile-variance or quantile-

mean covariance near-0 (i.e., V̂ (qτ ) ≈ 0 or Ĉ(q̂τ , x̄) ≈ 0). This is why, we

also evaluate the density estimators’ MISE after trimming the DGP support.

These results appear in the three “Support Trim” columns of tables 1 to 4.

We find that just by trimming the lowest and highest percentiles (i.e. ±1% of

support), the proposed density estimators improves performance notoriously

and that even before smoothing f̂c(qτ ) and f̂v(qτ ) override kernel estimation

for most of the distributions. For instance, for the Gaussian distribution

in table 1, f̂c(qτ )
HP performs two times better than f̂k(qτ ), while f̂v(qτ )

HP

performs four times better. Moreover, after ±1% trimming, all the smoothed

estimators perform better than f̂k(qτ ) for the four distributions.

Finally, we explore the proposed estimators’ performance after replacing

the upper-extreme values. Firstly, we estimate the density as before using all

the information available. Secondly, we detect upper-extreme values of point

estimation of the density estimator, and we replace these extreme values for

a lineal interpolation between the nearest density points. This process has

the advantage that it does not affect the support and produce a complete

density estimation (i.e., without trimming). We find that replacing 1% of

16



upper-extreme values for a lineal interpolation has slightly better results in

terms of MISE than cutting extremes of support in ±1%.

6.3 Alternative sample sizes, number of bootstrap and
number of quantiles

Figures 1 to 3 plot resulting MISE from the Monte Carlo simulations for a

Normal DGP without trimming or replacing extreme values.

In figure 1 we show how MISE of f̂v(qτ ) and f̂c(qτ ) decreases as the

sample size grows. We can also see that bootstrap estimators are dominated

by kernel estimation, confirming Hall and Martin (1988)’s theoretical result,

which states that the kernel density estimator has a faster rate of convergence.

However, we can also see that f̂v(qτ )
HP with sample size greater than 1200

performs almost identically to kernel.

Figure 1: MISE and sample size

Quantile variance density Quantile-mean covariance density

Notes: Number of Monte Carlo simulations is 1000. Bootstraps: 500. Taus: 100. Sample

size: Discrete grid over the set {10, 20, 30, 40, 50, 65, 80, ,100, 150, 200, 250, 300, 350,

400, 450, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 5000}.
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Figure 2 evaluates f̂c(qτ ) and f̂v(qτ ) performance when increasing the

number of bootstrap replications, leaving the sample size and remaining pa-

rameters fixed. From this graph we can conclude that f̂v(qτ ) requires less

bootstrap replications than f̂c(qτ ) to become stable, and that increasing the

number of bootstraps leads to convergence.

Figure 2: MISE and number of boostraps

Quantile variance density Quantile-mean covariance density

Notes: Number of Monte Carlo simulations: 1000. Sample size: 1000. Taus: 100.

Bootstraps: Discrete grid over the set {100 150 200 250 300 350 400 450 500 600 700 800

900 1000 1250 1500 1750 2000 2500 5000}.

Finally, in figure 3 we evaluate how the number of quantiles used in the

grid for the density estimation procedure affects the MISE. We find that

for f̂c(qτ ) and f̂v(qτ ) there is no trade-off between the number of quantiles

and MISE. However, there is a trade-off between quantiles and MISE for

smoothed estimators. Figure 3 show that for Gaussian DGP, after some

point, increasing the number of quantiles only increases the MISE. The reason

for this finding is that smoothing techniques improves density estimation

performance due to variance reduction. However, as the number of point

18



estimation converges to the sample size (which is fixed at N = 1000), the

variance of smoothed estimators also converges to the raw estimator variance.

Figure 3: MISE and number of quantiles

Quantile variance density Quantile-mean covariance density

Notes: Number of Monte Carlo simulations: 1000. Sample size: 1000. Bootstraps: 500.

Taus: Discrete grid over the set {20 40 60 80 100 140 180 240 320 480 540 760 880 980}
for number of quantiles.

7 Summary and conclusions

We evaluate two density estimators, which respectively make use of the boot-

strapped quantile variance and quantile-mean covariance for non-parametrically

estimating the density function of a continuous random variable. In sum,

given the results of the simulations we believe that this is a promising strat-

egy. Several advances could be done for improving the estimators’ perfor-

mance. For instance, by combining them with improved techniques for quan-

tile variance and covariance estimations such as m-out-of-n bootstrap and

exact bootstrap. We hope that this work will encourage more research on

this topic.
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Our proposed approach for density estimation is flexible enough to be

implemented, and presumably improved, by any overperfoming method for

variance and covariance estimation such as those proposed by Sheater (1986),

Huang (1991), Janas (1993), Rao et al. (1997), Hutson and Ernst (2000), Ho

and Lee (2005), Cheung and Lee (2005), and Alin et al. (2017).
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Csörgő, M., Horváth, L., and Deheuvels, P. (1991). Estimating the Quantile-
Density Function, pages 213–223. Springer Netherlands, Dordrecht.

David, H. A. and Nagaraja, H. (2003). Order Statistics. Wiley Series in Probability
and Statistics. Wiley, New Jersey, third edition. doi:10.1002/0471722162.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist.,
7(1):1–26.

Falk, M. (1986). ON THE ESTIMATION OF THE QUANTILE DENSITY
FUNCTION. Statistics & Probability Letters, 4(March):69–73.

21

doi:10.1002/0471722162


Ferguson, T. S. (1999). Asymptotic joint distribution of sample mean and a sample
quantile. UCLA Unpublished Manuscript, pages 1–5. https://www.math.ucla.
edu/~tom/papers/unpublished/meanmed.pdf.

Galton, F. (1889). Natural Inheritance. Macmillan, London and New York.

Gilchrist, W. (1980). Approximation Theorems of Mathematical Statistics. Wiley
Series in Probability and Statistics. Wiley & Sons, Inc., New Jersey, first edition.

Hald, A. A. (1998). A history of mathematical statistics from 1750 to 1930. New
York : Wiley. ”A Wiley-Interscience publication.”.

Hall, P. and Martin, M. A. (1988). Exact convergence rate of bootstrap quantile
variance estimator. Probability Theory and Related Fields, 80(2):261–268.

Ho, Y. H. S. and Lee, S. M. S. (2005). Iterated smoothed bootstrap confidence
intervals for population quantiles. Ann. Statist., 33(1):437–462.

Hodrick, R. and Prescott, E. (1997). Postwar u.s. business cycles: An empirical
investigation. Journal of Money, Credit and Banking, 29(1):1–16.

Huang, J. (1991). Estimating the variance of the sample median, discrete case.
Statistics & Probability Letters, 11(4):291 – 298.

Hutson, A. D. and Ernst, M. D. (2000). The Exact Bootstrap Mean and Variance
of an L-Estimator. Journal of the Royal Statistical Society, 62:89–94.

Janas, D. (1993). A smoothed bootstrap estimator for a studentized sample quan-
tile. Annals of the Institute of Statistical Mathematics, 45(2):317–329.

Jones, M. C. (1992). Estimating densities, quantiles, quantile densities and density
quantiles. Annals of the Institute of Statistical Mathematics, 44(4):721–727.

Koenker, R. (1994). Con dence Intervals for Regression Quantiles. In Mandl,
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Table 1: Gaussian Distribution - Bias and Mean Inte-
grated Square Error

Support Trim Range Upper-Trim
±0.01 ±0.025 ±0.05 −0.01 −0.025 −0.05

Bias

f̂v(qτ ) -0.0039 -0.0039 -0.0040 -0.0041 -0.0036 -0.0027 -0.0015

f̂v(qτ )MA -0.0032 -0.0033 -0.0034 -0.0035 -0.0030 -0.0019 -0.0007

f̂v(qτ )WMA -0.0023 -0.0025 -0.0028 -0.0034 -0.0020 -0.0011 0.0001

f̂v(qτ )HP -0.0039 -0.0039 -0.0040 -0.0041 -0.0036 -0.0027 -0.0015

f̂c(qτ ) -0.0080 -0.0081 -0.0082 -0.0084 -0.0077 -0.0067 -0.0055

f̂c(qτ )MA -0.0075 -0.0076 -0.0077 -0.0080 -0.0072 -0.0061 -0.0048

f̂c(qτ )WMA -0.0064 -0.0066 -0.0070 -0.0075 -0.0061 -0.0051 -0.0039

f̂c(qτ )HP -0.0080 -0.0081 -0.0082 -0.0084 -0.0077 -0.0067 -0.0055

f̂k(qτ ) 0.0024 0.0079 0.0087 0.0098 0.0075 0.0074 0.0073
MISE

f̂v(qτ ) 0.0020 0.0020 0.0021 0.0022 0.0019 0.0018 0.0016

f̂v(qτ )MA 0.0008 0.0012 0.0012 0.0012 0.0011 0.0010 0.0009

f̂v(qτ )WMA 0.0011 0.0008 0.0009 0.0013 0.0008 0.0007 0.0007

f̂v(qτ )HP 0.0004 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004

f̂c(qτ ) 0.0026 0.0026 0.0027 0.0028 0.0025 0.0023 0.0021

f̂c(qτ )MA 0.0017 0.0017 0.0017 0.0018 0.0016 0.0015 0.0014

f̂c(qτ )WMA 0.0012 0.0013 0.0013 0.0018 0.0012 0.0011 0.0010

f̂c(qτ )HP 0.0008 0.0008 0.0009 0.0009 0.0008 0.0008 0.0007

f̂k(qτ ) 0.0003 0.0017 0.0017 0.0019 0.0016 0.0016 0.0016
Ratio MISE

f̂v(qτ ) 7.0496 1.2088 1.1946 1.1506 1.1925 1.0864 0.9919

f̂v(qτ )MA 2.7991 0.6940 0.6865 0.6626 0.6875 0.6299 0.5758

f̂v(qτ )WMA 4.0469 0.4760 0.4905 0.7041 0.4765 0.4401 0.4061

f̂v(qτ )HP 1.5128 0.2584 0.2561 0.2502 0.2584 0.2424 0.2284

f̂c(qτ ) 9.1981 1.5768 1.5579 1.5000 1.5568 1.4225 1.2984

f̂c(qτ )MA 5.9198 1.0149 1.0032 0.9669 1.0065 0.9258 0.8462

f̂c(qτ )WMA 4.4111 0.7491 0.7582 0.9794 0.7515 0.6960 0.6405

f̂c(qτ )HP 2.8892 0.4956 0.4922 0.4807 0.4938 0.4633 0.4324

Notes: The simulations correspond to M = 1000; B = 500 bootstraps; quantiles grid given by
τ ∈ {0.01, 0.02, . . . , 0.99}; and sample size N = 1000. f̂v(qτ ): Quantile Variance Density. f̂c(qτ ):

Quantile-Mean Covariance Density. f̂k(qτ ): Kernel density estimation. f̂v(qτ )MA and f̂c(qτ )MA

are Moving Average smoothing. f̂v(qτ )WMA and f̂c(qτ )WMA are Kernel-Weighted Moving Average

(bw = 3) smoothing. f̂v(qτ )HP and f̂c(qτ )HP are HP filter (λ = 1600) smoothing. Ratio MISE is the

ratio of each density estimator’s MISE over f̂k(qτ ).



Table 2: Laplace Distribution - Bias and Mean Integrated
Square Error

Support Trim Range Upper-Trim
±0.01 ±0.025 ±0.05 −0.01 −0.025 −0.05

Bias

f̂v(qτ ) -0.0040 -0.0041 -0.0042 -0.0043 -0.0037 -0.0022 -0.0004

f̂v(qτ )MA -0.0036 -0.0037 -0.0037 -0.0039 -0.0033 -0.0017 0.0003

f̂v(qτ )WMA -0.0027 -0.0027 -0.0027 -0.0026 -0.0024 -0.0009 0.0010

f̂v(qτ )HP -0.0040 -0.0041 -0.0042 -0.0043 -0.0037 -0.0022 -0.0004

f̂c(qτ ) -0.0089 -0.0091 -0.0093 -0.0097 -0.0085 -0.0069 -0.0048

f̂c(qτ )MA -0.0088 -0.0089 -0.0091 -0.0094 -0.0083 -0.0066 -0.0044

f̂c(qτ )WMA -0.0076 -0.0076 -0.0076 -0.0075 -0.0072 -0.0055 -0.0035

f̂c(qτ )HP -0.0089 -0.0091 -0.0093 -0.0097 -0.0085 -0.0069 -0.0048

f̂k(qτ ) 0.0060 0.0151 0.0164 0.0173 0.0141 0.0121 0.0100
MISE

f̂v(qτ ) 0.0034 0.0035 0.0036 0.0038 0.0033 0.0030 0.0028

f̂v(qτ )MAf̂c(qτ )WMA 0.0014 0.0021 0.0021 0.0023 0.0020 0.0019 0.0018

f̂v(qτ )WMA 0.0020 0.0014 0.0015 0.0017 0.0014 0.0014 0.0014

f̂v(qτ )HP 0.0009 0.0009 0.0009 0.0010 0.0009 0.0009 0.0010

f̂c(qτ ) 0.0045 0.0046 0.0048 0.0050 0.0044 0.0040 0.0037

f̂c(qτ )MA 0.0030 0.0031 0.0032 0.0034 0.0030 0.0028 0.0027

f̂c(qτ )WMA 0.0023 0.0023 0.0023 0.0026 0.0022 0.0021 0.0021

f̂c(qτ )HP 0.0016 0.0016 0.0017 0.0018 0.0016 0.0016 0.0016

f̂k(qτ ) 0.0014 0.0057 0.0061 0.0065 0.0055 0.0053 0.0050
Ratio MISE

f̂v(qτ )QV 2.3960 0.6025 0.5872 0.5747 0.6018 0.5765 0.5678

f̂v(qτ )MA 1.0043 0.3607 0.3521 0.3455 0.3634 0.3585 0.3643

f̂v(qτ )WMA 1.4330 0.2481 0.2387 0.2604 0.2560 0.2589 0.2711

f̂v(qτ )HP 0.6284 0.1583 0.1550 0.1532 0.1619 0.1723 0.1901

f̂c(qτ ) 3.1905 0.8024 0.7820 0.7655 0.8002 0.7656 0.7468

f̂c(qτ )MA 2.1379 0.5381 0.5252 0.5152 0.5412 0.5312 0.5298

f̂c(qτ )WMA 1.6086 0.3971 0.3801 0.3958 0.4090 0.4085 0.4156

f̂c(qτ )HP 1.1286 0.2844 0.2784 0.2750 0.2890 0.2981 0.3133

See notes to Table 1.



Table 3: Gumbel Distribution - Bias and Mean Integrated
Square Error

Support Trim Range Upper-Trim
±0.01 ±0.025 ±0.05 −0.01 −0.025 −0.05

Bias

f̂v(qτ ) -0.0043 -0.0044 -0.0044 -0.0045 -0.0040 -0.0028 -0.0016

f̂v(qτ )MA -0.0035 -0.0036 -0.0037 -0.0039 -0.0032 -0.0020 -0.0006

f̂v(qτ )WMA -0.0024 -0.0028 -0.0031 -0.0039 -0.0021 -0.0010 0.0003

f̂v(qτ )HP -0.0043 -0.0044 -0.0044 -0.0045 -0.0040 -0.0028 -0.0016

f̂c(qτ ) -0.0092 -0.0093 -0.0094 -0.0096 -0.0089 -0.0076 -0.0062

f̂c(qτ )MA -0.0085 -0.0086 -0.0088 -0.0090 -0.0081 -0.0068 -0.0053

f̂c(qτ )WMA -0.0073 -0.0076 -0.0080 -0.0088 -0.0070 .0057 -0.0043

f̂c(qτ )HP -0.0092 -0.0093 -0.0094 -0.0096 -0.0089 -0.0076 -0.0062

f̂k(qτ )HP 0.0042 0.0119 0.0131 0.0145 0.0113 0.0110 0.0107
MISE

f̂v(qτ ) 0.0027 0.0027 0.0028 0.0029 0.0026 0.0023 0.0022

f̂v(qτ )MA 0.0011 0.0015 0.0016 0.0016 0.0015 0.0013 0.0012

f̂v(qτ )WMA 0.0015 0.0011 0.0011 0.0020 0.0010 0.0009 0.0009

f̂v(qτ )HP 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005

f̂c(qτ ) 0.0036 0.0037 0.0038 0.0039 0.0035 0.0032 0.0030

f̂c(qτ )MA 0.0024 0.0024 0.0025 0.0025 0.0023 0.0021 0.0019

f̂c(qτ )WMA 0.0018 0.0018 0.0019 0.0030 0.0018 0.0016 0.0015

f̂c(qτ )HP 0.0012 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011

f̂k(qτ ) 0.0004 0.0024 0.0024 0.0026 0.0023 0.0023 0.0023
Ratio MISE

f̂v(qτ ) 6.7457 1.1506 1.1447 1.0959 1.1360 1.0252 0.9383

f̂v(qτ )MA 2.6628 0.6535 0.6508 0.6236 0.6486 0.5891 0.5407

f̂v(qτ )WMA 3.8317 0.4533 0.4627 0.7634 0.4518 0.4142 0.3842

f̂v(qτ )HP 1.5397 0.2573 0.2537 0.2442 0.2628 0.2474 0.2357

f̂c(qτ ) 9.2464 1.5737 1.5641 1.4913 1.5560 1.4073 1.2871

f̂c(qτ )MA 5.9742 1.0173 1.0112 0.9626 1.0110 0.9221 0.8461

f̂c(qτ )WMA 4.5464 0.7726 0.7796 1.1312 0.7713 0.7097 0.6567

f̂c(qτ )HP 3.1642 0.5349 0.5313 0.5110 0.5395 0.5066 0.4777

See notes to Table 1.



Table 4: Gamma Distribution - Bias and Mean Integrated
Square Error

Support Trim Range Upper-Trim
±0.01 ±0.025 ±0.05 −0.01 −0.025 −0.05

Bias

f̂v(qτ ) -0.0076 -0.0071 -0.0068 -0.0066 -0.0054 -0.0018 0.0014

f̂v(qτ )MA -0.0068 -0.0067 -0.0067 -0.0065 -0.0059 -0.0034 -0.0009

f̂v(qτ )WMA -0.0079 -0.0075 -0.0072 -0.0056 -0.0053 -0.0010 0.0026

f̂v(qτ )HP -0.0076 -0.0071 -0.0068 -0.0066 -0.0054 -0.0018 0.0014

f̂c(qτ ) -0.0209 -0.0205 -0.0186 -0.0163 -0.0088 0.0010 0.0070

f̂c(qτ )MA -0.0181 -0.0173 -0.0167 -0.0154 -0.0146 -0.0092 -0.0050

f̂c(qτ )WMA -0.0216 -0.0236 -0.0214 -0.0184 -0.0061 0.0052 0.0116

f̂c(qτ )HP -0.0209 -0.0205 -0.0186 -0.0163 -0.0088 0.0010 0.0070

f̂k(qτ ) 0.0658 0.0938 0.0923 0.0792 0.0944 0.0870 0.0805
MISE

f̂v(qτ ) 0.0103 0.0093 0.0088 0.0078 0.0089 0.0076 0.0070

f̂v(qτ )MA 0.0039 0.0039 0.0039 0.0037 0.0039 0.0036 0.0034

f̂v(qτ )WMA 0.0040 0.0044 0.0054 0.0175 0.0037 0.0037 0.0040

f̂v(qτ )HP 0.0020 0.0019 0.0019 0.0018 0.0018 0.0018 0.0019

f̂c(qτ ) 0.6270 0.0382 0.0198 0.0135 0.5456 0.7360 0.7576

f̂c(qτ )MA 0.0242 0.0103 0.0090 0.0075 0.0304 0.0737 0.0777

f̂c(qτ )WMA 0.3119 0.0404 0.0231 0.0329 0.4029 0.7122 0.7529

f̂c(qτ )HP 0.1034 0.0137 0.0085 0.0060 0.1381 0.2940 0.3123

f̂k(qτ ) 0.0258 0.0412 0.0397 0.0324 0.0418 0.0381 0.0351
Ratio MISE

f̂v(qτ ) 0.4014 0.2261 0.2216 0.2403 0.2136 0.2006 0.1990

f̂v(qτ )MA 0.1526 0.0957 0.0989 0.1145 0.0924 0.0941 0.0976

f̂v(qτ )WMA 0.1556 0.1074 0.1358 0.5407 0.0886 0.0961 0.1131

f̂v(qτ )HP 0.0768 0.0461 0.0473 0.0565 0.0434 0.0464 0.0530

f̂c(qτ ) 24.3396 0.9267 0.4981 0.4174 13.0656 19.3351 21.5978

f̂c(qτ )MA 0.9394 0.2501 0.2273 0.2333 0.7279 1.9367 2.2148

f̂c(qτ )WMA 12.1093 0.9813 0.5811 1.0152 9.6493 18.7112 21.4627

f̂c(qτ )HP 4.0142 0.3329 0.2151 0.1839 3.3071 7.7230 8.9031

See notes to Table 1.


